Skip to content

WORM Database

The WORM database is a comma separated values (CSV) file containing standard molal thermodynamic properties and equation of state parameters of solid, liquid, gaseous, and aqueous chemical species. Its formatting based on the one big table (OBIGT) database from Jeff Dick's CHNOSZ software package, with a few additional columns to enable aqueous speciation calculations. As such, many column descriptions below are adapted from CHNOSZ documentation

Column descriptions

The first thirteen columns are:

name Species name
abbrv Species abbreviation
formula Species formula
state Species state, aqueous (aq), gaseous (gas), liquid (liq), or crystalline (cr). Mineral polymorphs are denoted by cr, cr2, cr3, etc.
ref1 Primary source
ref2 Secondary source
date Date of data entry
E_units Units of energy: cal or J
G Standard molal Gibbs energy of formation from the elements (cal mol-1)
H Standard molal enthalpy of formation from the elements (cal mol-1)
S Standard molal entropy (cal mol-1 K-1)
Cp Standard molal isobaric heat capacity (cal mol-1 K-1)
V Standard molal volume (cm3 mol-1)

For aqueous species, columns 14-21 contain parameters for the revised HKF (Helgeson Kirkham Flowers) equation of state:

a1 a1 * 10 (cal mol-1 bar-1)
a2 a2 * 10-2 (cal mol-1)
a3 a3 (cal K mol-1 bar-1)
a4 a4 * 10-4 (cal mol-1 K)
c1 c1 (cal mol-1 K-1)
c2 c2 * 10-4 (cal mol-1 K)
omega ω * 10-5 (cal mol-1)
z Species charge

For crystalline, liquid, and gaseous species, columns 14-21 contain coefficients for the heat capacity equation Cp = a + bT + cT-2 + dT-0.5 + eT2 + fTlambda

a a (cal K-1 mol-1)
b b * 103 (cal K-2 mol-1)
c c * 10-5 (cal K mol-1)
d d (cal K-0.5 mol-1)
e e * 105 (cal K-3 mol-1)
f f (cal K-lambda-1 mol-1)
lambda λ (exponent on the f term)
T Temperature of phase transition or upper temperature limit of validity of extrapolation (K)

Columns 22-27 enable aqueous speciation calculations.

azero å (in angstroms) Aqueous species hard core diameter, a parameter in the Debeye-Hückel B-dot equation (Helgeson 1969) used to calculate activity coefficients
neutral_ion_type 0 or -1, where -1 means a calculated activity coefficient will be applied to a neutral aqueous species
dissrxn For strict basis species, this is blank. For non-basis or auxiliary basis species, this is a balanced dissociation reaction into strict and/or auxiliary basis species. Negative and positive coefficients denote reactant and product reaction stoichiometry values, respectively.
tag basis for strict basis species, aux for auxiliary basis species, refstate for elements in their reference state. Other tags include idealized and polymorph.
formula_ox Oxidation states of each element in the chemical formula and their stoichiometry. Required for basis and auxiliary species. Optional for non-basis species. Used to suppress all redox reactions (if desired) involving specified elements (elements are defined when performing calculations with AqEquil on the WORM Portal).
category_1 Category of the species. Used to exclude entire categories of species when performing speciation calculations, e.g., if aqueous organic molecules are not desired. Examples include inorganic_aq, organic_aq, inorganic_cr, and inorganic_gas
category_2 A second category of the species. Like category_1, it can be used to exclude species during speciation calculations.

It is possible to add new columns to the right of the datasheet to contain notes and metadata, or new categories to exclude species during aqueous speciation (like columns category_1 and category_2).

Database references

References keyed in ref1 and ref2 columns. Most of the contents of this table are reproduced from CHNOSZ documentation.

key author year citation note URL
AH97b J. P. Amend and H. C. Helgeson 1997 J. Chem. Soc., Faraday Trans. 93, 1927-1941 amino acids GHS https://doi.org/10.1039/A608126F
AP01 J. P. Amend and A. V. Plyasunov 2001 Geochim. Cosmochim. Acta 65, 3901-3917 carbohydrates https://doi.org/10.1016/S0016-7037(01)00707-4
CS16 P. A. Canovas III and E. L. Shock 2016 Geochim. Cosmochim. Acta 195, 293-322 citric acid cycle metabolites https://doi.org/10.1016/j.gca.2016.08.028
CS16.1 P. A. Canovas III and E. L. Shock 2016 Geochim. Cosmochim. Acta 195, 293-322 citric acid species HKF a1--a4 parameters https://doi.org/10.1016/j.gca.2016.08.028
DLH06.1 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 Biogeosciences 3, 311-336 amino acids HKF parameters https://doi.org/10.5194/bg-3-311-2006
DLH06.3 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 Biogeosciences 3, 311-336 glycine, [Gly], and [UPBB] HKF parameters https://doi.org/10.5194/bg-3-311-2006
DLH06.4 J. M. Dick, D. E. LaRowe and H. C. Helgeson 2006 Biogeosciences 3, 311-336 methionine HKF parameters https://doi.org/10.5194/bg-3-311-2006
GKL02 R. N. Goldberg et al. 2002 J. Phys. Chem. Ref. Data 31, 231-370 glycine, diglycine, and triglycine (+1 and -1 ions) GHS https://doi.org/10.1063/1.1416902
HDNB78 H. C. Helgeson, J. M. Delany et al. 1978 Am. J. Sci. 278A, 1-229 data for minerals and phase transitions https://www.worldcat.org/oclc/13594862
HDNB78.1 H. C. Helgeson, J. M. Delany et al. 1978 Am. J. Sci. 278A, 1-229 litharge S, V, and Cp parameters https://www.worldcat.org/oclc/13594862
HDNB78.2 H. C. Helgeson, J. M. Delany et al. 1978 Am. J. Sci. 278A, 1-229 celestite V and Cp parameters https://www.worldcat.org/oclc/13594862
Hel85 H. C. Helgeson 1985 Am. J. Sci. 285, 845-855 ferrosilite and siderite https://doi.org/10.2475/ajs.285.9.845
HSS95 J. R. Haas, E. L. Shock and D. C. Sassani 1995 Geochim. Cosmochim. Acta 59, 4329-4350 complexes of rare earth elements https://doi.org/10.1016/0016-7037(95)00314-P
JH85 K. J. Jackson and H. C. Helgeson 1985 Econ. Geol. 80, 1365-1378 Sn minerals https://doi.org/10.2113/gsecongeo.80.5.1365
Kel60 K. K. Kelley 1960 U. S. Bureau of Mines Bull. 584 gases Cp https://www.worldcat.org/oclc/693388901
Kel60.2 K. K. Kelley 1960 U. S. Bureau of Mines Bull. 584 iron Cp https://www.worldcat.org/oclc/693388901
Kel60.3 K. K. Kelley 1960 U. S. Bureau of Mines Bull. 584 gypsum Cp https://www.worldcat.org/oclc/693388901
Kit14 N. Kitadai 2014 J. Mol. Evol. 78, 171-187 glycine, diglycine, and triglycine (zwitterions and ions); diketopiperazine, [Gly] and [UPBB] groups https://doi.org/10.1007/s00239-014-9616-1
LA16 D. E. LaRowe and J. P. Amend 2016 ISME J. 10, 1285-1295 fatty acids, saccharides, and other species https://doi.org/10.1038/ismej.2015.227
LCT17 A. R. Lowe, J. S. Cox and P. R. Tremaine 2017 J. Chem. Thermodynamics 112, 129-145 adenine HKF parameters https://doi.org/10.1016/j.jct.2017.04.005
LD12.2 D. E. LaRowe and J. M. Dick 2012 Geochim. Cosmochim. Acta 80, 70-91 methionine GHS https://doi.org/10.1016/j.gca.2011.11.041
LH06a D. E. LaRowe and H. C. Helgeson 2006 Geochim. Cosmochim. Acta 70, 4680-4724 nucleic-acid bases, nucleosides, and nucleotides https://doi.org/10.1016/j.gca.2006.04.010
LH06a.1 D. E. LaRowe and H. C. Helgeson 2006 Geochim. Cosmochim. Acta 70, 4680-4724 citric acid and citrate https://doi.org/10.1016/j.gca.2006.04.010
LH06b D. E. LaRowe and H. C. Helgeson 2006 Thermochim. Acta 448, 82-106 Mg-complexed adenosine nucleotides (ATP), NAD, and NADP https://doi.org/10.1016/j.tca.2006.06.008
MGN03 J. Majzlan, K.-D. Grevel and A. Navrotsky 2003 Am. Mineral. 88, 855-859 goethite, lepidocrocite, and maghemite GHS https://doi.org/10.2138/am-2003-5-614
MS97 T. M. McCollom and E. L. Shock 1997 Geochim. Cosmochim. Acta 61, 4375-4391 MgSO4, NaSO4-, and HCl https://doi.org/10.1016/S0016-7037(97)00241-X
MS97.1 T. M. McCollom and E. L. Shock 1997 Geochim. Cosmochim. Acta 61, 4375-4391 sulfur https://doi.org/10.1016/S0016-7037(97)00241-X
MS97.2 T. M. McCollom and E. L. Shock 1997 Geochim. Cosmochim. Acta 61, 4375-4391 aqueous HCl https://doi.org/10.1016/S0016-7037(97)00241-X
MS99 W. M. Murphy and E. L. Shock 1999 Rev. Mineral. Geochem. 38, 221-253 actinides http://rimg.geoscienceworld.org/content/38/1/221
Nor13 D. K. Nordstrom 2013 Proced. Earth Plan. Sc. 7, 624-627 portlandite https://doi.org/10.1016/j.proeps.2013.03.140
OBIGT.1 J. M. Dick 2017 OBIGT database in CHNOSZ GHS (Tr) of the phase that is stable at 298.15 K was combined with Htr and the Cp coefficients to calculate the metastable GHS (Tr) of the phases that are stable at higher temperatures. http://chnosz.net
Pan70 L. B. Pankratz 1970 U. S. Bureau of Mines Report of Investigations 7430 chlorargyrite https://www.worldcat.org/oclc/14154245
PB82 L. N. Plummer and E. Busenberg 1982 Geochim. Cosmochim. Acta 46, 1011-1040 aragonite and calcite https://doi.org/10.1016/0016-7037(82)90056-4
PK70 L. B. Pankratz and E. G. King 1970 U. S. Bureau of Mines Report of Investigations 7435 bornite and chalcopyrite https://www.worldcat.org/oclc/14154292
PS01 A. V. Plyasunov and E. L. Shock 2001 Geochim. Cosmochim. Acta 65, 3879-3900 aqueous nonelectrolytes https://doi.org/10.1016/S0016-7037(01)00678-0
RA87 E. J. Reardon and D. K. Armstrong 1987 Geochim. Cosmochim. Acta 51, 63-72 celestite GHS https://doi.org/10.1016/0016-7037(87)90007-X
RHF78 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 U. S. Geological Survey Bull. 1452 chlorargyrite https://doi.org/10.3133/b1452
RHF78.2 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 U. S. Geological Survey Bull. 1452 iron https://doi.org/10.3133/b1452
RHF78.3 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 U. S. Geological Survey Bull. 1452 gibbsite GHS https://doi.org/10.3133/b1452
RHF78.4 R. A. Robie, B. S. Hemingway and J. R. Fisher 1978 U. S. Geological Survey Bull. 1452 rutile and titanite https://doi.org/10.3133/b1452
SH88 E. L. Shock and H. C. Helgeson 1988 Geochim. Cosmochim. Acta 52, 2009-2036 ionic species https://doi.org/10.1016/0016-7037(88)90181-0
SH88.1 E. L. Shock and H. C. Helgeson 1988 Geochim. Cosmochim. Acta 52, 2009-2036 values of GHS https://doi.org/10.1016/0016-7037(88)90181-0
SH88.2 E. L. Shock and H. C. Helgeson 1988 Geochim. Cosmochim. Acta 52, 2009-2036 H2AsO3- https://doi.org/10.1016/0016-7037(88)90181-0
SH88.3 E. L. Shock and H. C. Helgeson 1988 Geochim. Cosmochim. Acta 52, 2009-2036 Ag+ https://doi.org/10.1016/0016-7037(88)90181-0
SH88.4 E. L. Shock and H. C. Helgeson 1988 Geochim. Cosmochim. Acta 52, 2009-2036 K+, Na+, Ca+2, Mg+2, Cl-, and OH- https://doi.org/10.1016/0016-7037(88)90181-0
SH90 E. L. Shock and H. C. Helgeson 1990 Geochim. Cosmochim. Acta 54, 915-945 organic species https://doi.org/10.1016/0016-7037(90)90429-O
Sho93.1 E. L. Shock 1993 Geochim. Cosmochim. Acta 57, 3341-3349 carbon monoxide and ethylene https://doi.org/10.1016/0016-7037(93)90542-5
Sho95 E. L. Shock 1995 Am. J. Sci. 295, 496-580 carboxylic acids https://doi.org/10.2475/ajs.295.5.496
SHS89 E. L. Shock, H. C. Helgeson and D. A. Sverjensky 1989 Geochim. Cosmochim. Acta 53, 2157-2183 inorganic neutral species https://doi.org/10.1016/0016-7037(89)90341-4
SHS89.1 E. L. Shock, H. C. Helgeson and D. A. Sverjensky 1989 Geochim. Cosmochim. Acta 53, 2157-2183 SiO2 https://doi.org/10.1016/0016-7037(89)90341-4
SK95 E. L. Shock and C. M. Koretsky 1995 Geochim. Cosmochim. Acta 59, 1497-1532 metal-organic acid complexes https://doi.org/10.1016/0016-7037(95)00058-8
SLOP16.3 E. L. Shock et al. 2016 slop16.dat computer data file formaldehyde: "Entropy corrected to be compatible with the equation ΔH=ΔG+TΔS for the formation reaction from elements. See footnote i in table 2 of @SS93." https://doi.org/10.5281/zenodo.2630820
SLOP16.5 E. L. Shock et al. 2016 slop16.dat computer data file n-octanoate: "Enthalpy corrected to be compatible with the equation ΔG=ΔH-TΔS for the formation reaction from elements. See footnote ab in table 4 of @Sho95." https://doi.org/10.5281/zenodo.2630820
SLOP16.7 E. L. Shock et al. 2016 slop16.dat computer data file hexanol, heptanol, and octanol: "Minor differences in Gibbs energy, entropy, ω, a1, a2, a3, a4 and c1 values compared to @SH90." https://doi.org/10.5281/zenodo.2630820
SLOP98.10 E. L. Shock et al. 1998 slop98.dat computer data file "Corrected values based on data from @HSS95 " http://geopig.asu.edu/?q=tools
SLOP98.11 E. L. Shock et al. 1998 slop98.dat computer data file "Data and parameters as used by @MS97. " http://geopig.asu.edu/?q=tools
SLOP98.2 E. L. Shock et al. 1998 slop98.dat computer data file daphnite; "Gf and Hf from @SS93a TMM" http://geopig.asu.edu/?q=tools
SLOP98.8 E. L. Shock et al. 1998 slop98.dat computer data file "These data were used in @SK95, but were not tabulated in the paper." http://geopig.asu.edu/?q=tools
SM93 E. L. Shock and W. B. McKinnon 1993 Icarus 106, 464-477 CO, HCN, urea https://doi.org/10.1006/icar.1993.1185
SPRONS92.2 H. C. Helgeson et al. 1992 sprons92.dat computer data file Ca-bearing minerals; "Gibbs free energies and enthalpies were corrected to be consistent with updated values of Gibbs free energies of Ca2+ and CO32- [@SH88] together with the solubilities of calcite and aragonite reported by @PB82 "
SS93 M. D. Schulte and E. L. Shock 1993 Geochim. Cosmochim. Acta 57, 3835-3846 aldehydes https://doi.org/10.1016/0016-7037(93)90337-V
SS98a D. C. Sassani and E. L. Shock 1998 Geochim. Cosmochim. Acta 62, 2643-2671 platinum-group ions and complexes https://doi.org/10.1016/S0016-7037(98)00049-0
SS98a.1 D. C. Sassani and E. L. Shock 1998 Geochim. Cosmochim. Acta 62, 2643-2671 platinum-group solids https://doi.org/10.1016/S0016-7037(98)00049-0
SS98a.2 D. C. Sassani and E. L. Shock 1998 Geochim. Cosmochim. Acta 62, 2643-2671 Rh+3 https://doi.org/10.1016/S0016-7037(98)00049-0
SS98a.3 D. C. Sassani and E. L. Shock 1998 Geochim. Cosmochim. Acta 62, 2643-2671 Pd+2 and Pt+2 and their complexes https://doi.org/10.1016/S0016-7037(98)00049-0
SSB97 E. L. Shock, D. C. Sassani and H. Betz 1997 Geochim. Cosmochim. Acta 61, 4245-4266 uranium species https://doi.org/10.1016/S0016-7037(97)00240-8
SSB97.1 E. L. Shock, D. C. Sassani and H. Betz 1997 Geochim. Cosmochim. Acta 61, 4245-4266 uraninite https://doi.org/10.1016/S0016-7037(97)00240-8
SSH97 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Geochim. Cosmochim. Acta 61, 1359-1412 metal complexes https://doi.org/10.1016/S0016-7037(97)00009-4
SSH97.1 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Geochim. Cosmochim. Acta 61, 1359-1412 Au(HS)2- and Ag(HS)2- https://doi.org/10.1016/S0016-7037(97)00009-4
SSH97.2 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Geochim. Cosmochim. Acta 61, 1359-1412 HSiO3- https://doi.org/10.1016/S0016-7037(97)00009-4
SSH97.3 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Geochim. Cosmochim. Acta 61, 1359-1412 Au-, Ag-, Cu- and Zn-chloride complexes https://doi.org/10.1016/S0016-7037(97)00009-4
SSH97.4 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Geochim. Cosmochim. Acta 61, 1359-1412 Zn-acetate complexes https://doi.org/10.1016/S0016-7037(97)00009-4
SSH97.5 D. A. Sverjensky, E. L. Shock and H. C. Helgeson 1997 Geochim. Cosmochim. Acta 61, 1359-1412 NaHSiO3, CaHSiO3+, and MgHSiO3+ https://doi.org/10.1016/S0016-7037(97)00009-4
SSWS97 E. L. Shock, D. C. Sassani et al. 1997 Geochim. Cosmochim. Acta 61, 907-950 aqueous ions and hydroxide complexes https://doi.org/10.1016/S0016-7037(96)00339-0
SSWS97.1 E. L. Shock, D. C. Sassani et al. 1997 Geochim. Cosmochim. Acta 61, 907-950 zincite and litharge https://doi.org/10.1016/S0016-7037(96)00339-0
SSWS97.2 E. L. Shock, D. C. Sassani et al. 1997 Geochim. Cosmochim. Acta 61, 907-950 Au+ and Cu+ https://doi.org/10.1016/S0016-7037(96)00339-0
SSWS97.3 E. L. Shock, D. C. Sassani et al. 1997 Geochim. Cosmochim. Acta 61, 907-950 arsenate and arsenite species https://doi.org/10.1016/S0016-7037(96)00339-0
SSWS97.4 E. L. Shock, D. C. Sassani et al. 1997 Geochim. Cosmochim. Acta 61, 907-950 Al+3 and Al-hydroxide complexes https://doi.org/10.1016/S0016-7037(96)00339-0
SSWS97.5 E. L. Shock, D. C. Sassani et al. 1997 Geochim. Cosmochim. Acta 61, 907-950 Zn+2 and Zn-hydroxide complexes https://doi.org/10.1016/S0016-7037(96)00339-0