Module pychnosz.core
Core thermodynamic calculation functions for CHNOSZ.
Sub-modules
pychnosz.core.animationpychnosz.core.balance-
Reaction balancing utilities …
pychnosz.core.equilibrium-
Chemical equilibrium solver for CHNOSZ …
pychnosz.core.speciation-
Chemical speciation calculation engine for CHNOSZ …
pychnosz.core.unicurve-
CHNOSZ unicurve() function - Calculate univariant curves for geothermometry/geobarometry …
Functions
def affinity(messages: bool = True,
basis: pandas.core.frame.DataFrame | None = None,
species: pandas.core.frame.DataFrame | None = None,
iprotein: int | List[int] | numpy.ndarray | None = None,
loga_protein: float | List[float] = 0.0,
**kwargs) ‑> Dict[str, Any]-
Expand source code
def affinity(messages: bool = True, basis: Optional[pd.DataFrame] = None, species: Optional[pd.DataFrame] = None, iprotein: Optional[Union[int, List[int], np.ndarray]] = None, loga_protein: Union[float, List[float]] = 0.0, **kwargs) -> Dict[str, Any]: """ Calculate affinities of formation reactions. This function calculates chemical affinities for the formation reactions of species of interest from user-selected basis species. The affinities are calculated as A/2.303RT where A is the chemical affinity. Parameters ---------- messages : bool, default True Whether to print informational messages basis : pd.DataFrame, optional Basis species definition to use (if not using global basis) species : pd.DataFrame, optional Species definition to use (if not using global species) iprotein : int, list of int, or array, optional Build proteins from residues (row numbers in thermo().protein) loga_protein : float or list of float, default 0.0 Activity of proteins (log scale) **kwargs : dict Variable arguments defining calculation conditions: - Basis species names (e.g., CO2=[-60, 20, 5]): Variable basis species activities - T : float or list, Temperature in °C - P : float or list, Pressure in bar - property : str, Property to calculate ("A", "logK", "G", etc.) - exceed_Ttr : bool, Allow extrapolation beyond transition temperatures - exceed_rhomin : bool, Allow calculations below minimum water density - return_buffer : bool, Return buffer activities - balance : str, Balance method for protein buffers Returns ------- dict Dictionary containing: - fun : str, Function name ("affinity") - args : dict, Arguments used in calculation - sout : dict, Subcrt calculation results - property : str, Property calculated - basis : pd.DataFrame, Basis species definition - species : pd.DataFrame, Species of interest definition - T : float or array, Temperature(s) in Kelvin - P : float or array, Pressure(s) in bar - vars : list, Variable names - vals : dict, Variable values - values : dict, Calculated affinity values by species Examples -------- >>> import pychnosz >>> pychnosz.reset() >>> pychnosz.basis(["CO2", "H2O", "NH3", "H2S", "H+", "O2"]) >>> pychnosz.species(["glycine", "tyrosine", "serine", "methionine"]) >>> result = pychnosz.affinity(CO2=[-60, 20, 5], T=350, P=2000) >>> print(result['values'][1566]) # Glycine affinities >>> # With proteins >>> import pandas as pd >>> aa = pd.read_csv("POLG.csv") >>> iprotein = pychnosz.add_protein(aa) >>> pychnosz.basis("CHNOSe") >>> a = pychnosz.affinity(iprotein=iprotein, pH=[2, 14], Eh=[-1, 1]) Notes ----- This implementation maintains complete fidelity to R CHNOSZ affinity(): - Identical argument processing including dynamic basis species parameters - Same variable expansion and multi-dimensional calculations - Exact energy() function behavior for property calculations - Identical output structure and formatting - Support for protein calculations via iprotein parameter """ # Get thermo object for protein handling thermo_obj = thermo() # Handle iprotein parameter ires = None original_species = None if iprotein is not None: # Convert to array if isinstance(iprotein, (int, np.integer)): iprotein = np.array([iprotein]) elif isinstance(iprotein, list): iprotein = np.array(iprotein) # Check all proteins are available if np.any(np.isnan(iprotein)): raise AffinityError("`iprotein` has some NA values") if thermo_obj.protein is None or not np.all(iprotein < len(thermo_obj.protein)): raise AffinityError("some value(s) of `iprotein` are not rownumbers of thermo().protein") # Add protein residues to the species list # Amino acids in 3-letter code aminoacids_3 = ["Ala", "Cys", "Asp", "Glu", "Phe", "Gly", "His", "Ile", "Lys", "Leu", "Met", "Asn", "Pro", "Gln", "Arg", "Ser", "Thr", "Val", "Trp", "Tyr"] # Use _RESIDUE notation (matches R CHNOSZ affinity.R line 84) resnames_residue = ["H2O_RESIDUE"] + [f"{aa}_RESIDUE" for aa in aminoacids_3] # Save original species from .species import species as species_func original_species = get_species() if is_species_defined() else None # Add residue species with activity 0 (all in "aq" state) species_func(resnames_residue, state="aq", add=True, messages=messages) # Get indices of residues in species list species_df_temp = get_species() ires = [] for name in resnames_residue: idx = np.where(species_df_temp['name'] == name)[0] if len(idx) > 0: ires.append(idx[0]) ires = np.array(ires) # Check if basis and species are defined (use provided or global) if basis is None: if not is_basis_defined(): raise AffinityError("basis species are not defined") basis_df = get_basis() else: basis_df = basis if species is None: if not is_species_defined(): raise AffinityError("species are not defined") species_df = get_species() else: species_df = species # Process arguments args_orig = dict(kwargs) # Handle argument recall (if first argument is previous affinity result) if len(args_orig) > 0: first_key = list(args_orig.keys())[0] first_value = args_orig[first_key] if (isinstance(first_value, dict) and first_value.get('fun') == 'affinity'): # Update arguments from previous result aargs = first_value.get('args', {}) # Update with new arguments (skip the first one) new_args = dict(list(args_orig.items())[1:]) aargs.update(new_args) return affinity(**aargs) # Process energy arguments args = energy_args(args_orig, messages, basis_df=basis_df) # Get property to calculate property_name = args.get('what', 'A') # Get thermo data thermo_obj = thermo() # basis_df and species_df are already set above # Determine if we need specific property calculation if property_name and property_name != 'A': # Calculate specific property using energy function energy_result = energy( what=property_name, vars=args['vars'], vals=args['vals'], lims=args['lims'], T=args['T'], P=args['P'], IS=args.get('IS', 0), exceed_Ttr=kwargs.get('exceed_Ttr', True), exceed_rhomin=kwargs.get('exceed_rhomin', False), basis_df=basis_df, species_df=species_df, messages=messages ) affinity_values = energy_result['a'] energy_sout = energy_result['sout'] else: # Calculate affinities (A/2.303RT) energy_result = energy( what='A', vars=args['vars'], vals=args['vals'], lims=args['lims'], T=args['T'], P=args['P'], IS=args.get('IS', 0), exceed_Ttr=kwargs.get('exceed_Ttr', True), exceed_rhomin=kwargs.get('exceed_rhomin', False), basis_df=basis_df, species_df=species_df, messages=messages ) affinity_values = energy_result['a'] energy_sout = energy_result['sout'] # Handle protein affinity calculations if iprotein was provided if iprotein is not None and ires is not None: # Calculate protein affinities from residue affinities using group additivity # Normalize loga_protein to match number of proteins if isinstance(loga_protein, (int, float)): loga_protein_arr = np.full(len(iprotein), loga_protein) else: loga_protein_arr = np.array(loga_protein) if len(loga_protein_arr) < len(iprotein): loga_protein_arr = np.resize(loga_protein_arr, len(iprotein)) # Calculate affinity for each protein protein_affinities = {} for ip, iprot in enumerate(iprotein): # Get protein amino acid composition from thermo().protein # Columns 4:24 contain chains and amino acid counts (0-indexed: columns 4-23) protein_row = thermo_obj.protein.iloc[iprot] aa_counts = protein_row.iloc[4:24].values.astype(float) # Calculate protein affinity by summing residue affinities weighted by composition # affinity_values keys are ispecies indices # Get the ispecies for each residue species_df_current = get_species() residue_ispecies = species_df_current.iloc[ires]['ispecies'].values # Initialize protein affinity with same shape as residue affinities first_residue_key = residue_ispecies[0] if first_residue_key in affinity_values: template_affinity = affinity_values[first_residue_key] protein_affinity = np.zeros_like(template_affinity) # Sum up contributions from all residues for i, res_ispecies in enumerate(residue_ispecies): if res_ispecies in affinity_values: residue_contrib = affinity_values[res_ispecies] * aa_counts[i] protein_affinity = protein_affinity + residue_contrib # Subtract protein activity protein_affinity = protein_affinity - loga_protein_arr[ip] # Use negative index to denote protein (matches R CHNOSZ convention) protein_key = -(iprot + 1) # Negative of (row number + 1) protein_affinities[protein_key] = protein_affinity # Add ionization affinity if H+ is in basis (matching R CHNOSZ behavior) if 'H+' in basis_df.index: if messages: print("affinity: ionizing proteins ...") # Get protein amino acid compositions from ..biomolecules.proteins import pinfo from ..biomolecules.ionize_aa import ionize_aa # Get aa compositions for these proteins aa = pinfo(iprotein) # Determine pH values from vars/vals or basis # Check if H+ is a variable if 'H+' in args['vars']: # H+ is a variable - get pH from vals iHplus = args['vars'].index('H+') pH_vals = -np.array(args['vals'][iHplus]) # pH = -log(a_H+) else: # H+ is constant - get from basis pH_val = -basis_df.loc['H+', 'logact'] # pH = -log(a_H+) pH_vals = np.array([pH_val]) # Get T values (already processed earlier) T_vals = args['T'] if isinstance(T_vals, (int, float)): T_celsius = T_vals - 273.15 else: T_celsius = T_vals - 273.15 # Get P values P_vals = args['P'] # Calculate ionization affinity # ionize_aa expects arrays, so ensure T, P, pH are properly shaped # For grid calculations, we need to expand T, P, pH into a grid matching the affinity grid if len(args['vars']) >= 2: # Multi-dimensional case - create grid # Figure out which vars are T, P, H+ var_names = args['vars'] has_T_var = 'T' in var_names has_P_var = 'P' in var_names has_Hplus_var = 'H+' in var_names # Build T, P, pH grids matching the affinity calculation grid if has_T_var and has_Hplus_var: # Both T and pH vary - create meshgrid T_grid, pH_grid = np.meshgrid(T_celsius, pH_vals, indexing='ij') T_flat = T_grid.flatten() pH_flat = pH_grid.flatten() if isinstance(P_vals, str): P_flat = np.array([P_vals] * len(T_flat)) else: P_flat = np.full(len(T_flat), P_vals if isinstance(P_vals, (int, float)) else P_vals[0]) elif has_T_var: # Only T varies T_flat = T_celsius if isinstance(T_celsius, np.ndarray) else np.array([T_celsius]) pH_flat = np.full(len(T_flat), pH_vals[0]) P_flat = np.array([P_vals] * len(T_flat)) if isinstance(P_vals, str) else np.full(len(T_flat), P_vals if isinstance(P_vals, (int, float)) else P_vals[0]) elif has_Hplus_var: # Only pH varies pH_flat = pH_vals T_flat = np.full(len(pH_flat), T_celsius if isinstance(T_celsius, (int, float)) else T_celsius[0]) P_flat = np.array([P_vals] * len(pH_flat)) if isinstance(P_vals, str) else np.full(len(pH_flat), P_vals if isinstance(P_vals, (int, float)) else P_vals[0]) else: # No T or pH variables T_flat = np.array([T_celsius if isinstance(T_celsius, (int, float)) else T_celsius[0]]) pH_flat = pH_vals P_flat = np.array([P_vals] if isinstance(P_vals, str) else [P_vals if isinstance(P_vals, (int, float)) else P_vals[0]]) else: # Single or no variable case T_flat = np.array([T_celsius if isinstance(T_celsius, (int, float)) else T_celsius[0]]) pH_flat = pH_vals if isinstance(pH_vals, np.ndarray) else np.array([pH_vals[0] if hasattr(pH_vals, '__getitem__') else pH_vals]) P_flat = np.array([P_vals] if isinstance(P_vals, str) else [P_vals if isinstance(P_vals, (int, float)) else P_vals[0]]) # Call ionize_aa to get ionization affinity ionization_result = ionize_aa(aa, property="A", T=T_flat, P=P_flat, pH=pH_flat) # Add ionization affinity to formation affinity for each protein for ip, iprot in enumerate(iprotein): protein_key = -(iprot + 1) ionization_affinity = ionization_result.iloc[:, ip].values # Reshape to match formation affinity dimensions if needed formation_affinity = protein_affinities[protein_key] if isinstance(formation_affinity, np.ndarray): if formation_affinity.shape != ionization_affinity.shape: # Reshape ionization affinity to match formation affinity ionization_affinity = ionization_affinity.reshape(formation_affinity.shape) # Add ionization to formation affinity protein_affinities[protein_key] = formation_affinity + ionization_affinity # Replace affinity_values with protein affinities affinity_values = protein_affinities # Calculate stoichiometric coefficients for proteins using matrix multiplication # This matches R CHNOSZ: protbasis <- t(t((resspecies[ires, 1:nrow(thermo$basis)])) %*% t((thermo$protein[iprotein, 5:25]))) # IMPORTANT: Get the species list BEFORE deletion species_df_with_residues = get_species() # Extract basis species coefficients from residue species (rows = residues, cols = basis species) # ires contains indices of residues in the species list # We need the columns corresponding to basis species basis_cols = list(basis_df.index) # e.g., ['CO2', 'H2O', 'NH3', 'H2S', 'e-', 'H+'] # Create residue coefficient matrix (n_residues x n_basis) # resspecies[ires, 1:nrow(thermo$basis)] in R res_coeffs = species_df_with_residues.iloc[ires][basis_cols].values.astype(float) # Get amino acid composition matrix (n_proteins x n_residues) # thermo$protein[iprotein, 5:25] in R (columns 5-25 contain chains and 20 amino acids) # In Python (0-indexed): columns 4:24 contain chains and 20 amino acids aa_composition = [] for iprot in iprotein: protein_row = thermo_obj.protein.iloc[iprot] # Columns 4:24 contain: chains, Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, # Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr aa_counts = protein_row.iloc[4:24].values.astype(float) aa_composition.append(aa_counts) aa_composition = np.array(aa_composition) # Shape: (n_proteins, 21) # Matrix multiplication: (n_proteins x 21) @ (21 x n_basis) = (n_proteins x n_basis) # Note: res_coeffs has shape (21, n_basis) - first row is H2O, next 20 are amino acids # R code: t(t(resspecies) %*% t(protein)) means: (n_basis x n_residues) @ (n_residues x n_proteins) = (n_basis x n_proteins) # Then transpose to get (n_proteins x n_basis) # In Python: (n_proteins x n_residues) @ (n_residues x n_basis) = (n_proteins x n_basis) protein_coeffs = aa_composition @ res_coeffs # Shape: (n_proteins, n_basis) # Delete residue species from species list now that we have the coefficients from .species import species as species_func species_func(ires.tolist(), delete=True, messages=False) if original_species is not None: # Restore original species (but we've already calculated, so just update species_df) pass # Create DataFrame for proteins with basis species coefficients species_data = {} # Add basis species columns for j, basis_sp in enumerate(basis_cols): species_data[basis_sp] = protein_coeffs[:, j] # Add metadata columns protein_names = [] protein_ispecies = [] for iprot in iprotein: prot_row = thermo_obj.protein.iloc[iprot] # Escape underscores for LaTeX compatibility in diagram labels protein_name = f"{prot_row['protein']}_{prot_row['organism']}" # Replace underscores with escaped version for matplotlib/LaTeX protein_name_escaped = protein_name.replace('_', r'\_') protein_names.append(protein_name_escaped) protein_ispecies.append(-(iprot + 1)) # Negative index species_data['ispecies'] = protein_ispecies species_data['logact'] = loga_protein_arr[:len(iprotein)] species_data['state'] = ['aq'] * len(iprotein) species_data['name'] = protein_names species_df = pd.DataFrame(species_data) # Process temperature and pressure for output T_out = args['T'] P_out = args['P'] vars_list = args['vars'] vals_dict = {} # Convert variable names and values for output # Important: Keep vars_list with actual basis species names (H+, e-) for internal use # but create display versions in vals_dict with user-friendly names (pH, pe, Eh) vars_list_display = vars_list.copy() for i, var in enumerate(vars_list): # Handle pH, pe, Eh conversions for output if var == 'H+' and 'pH' in args_orig: vars_list_display[i] = 'pH' vals_dict['pH'] = [-val for val in args['vals'][i]] elif var == 'e-' and 'pe' in args_orig: vars_list_display[i] = 'pe' vals_dict['pe'] = [-val for val in args['vals'][i]] elif var == 'e-' and 'Eh' in args_orig: vars_list_display[i] = 'Eh' # Convert from log(a_e-) back to Eh using temperature-dependent formula # log(a_e-) = -pe, so pe = -log(a_e-) # Eh = pe * (ln(10) * R * T) / F = -log(a_e-) * T / 5039.76 T_kelvin = args['T'] if isinstance(args['T'], (int, float)) else args['T'][0] if hasattr(args['T'], '__len__') else 298.15 conversion_factor = T_kelvin / 5039.76 # volts per pe unit vals_dict['Eh'] = [-val * conversion_factor for val in args['vals'][i]] else: vals_dict[var] = args['vals'][i] # Keep vars_list as-is (with basis species names) for internal calculations # vars_list_display will be used for output only # Check if T or P are variables if 'T' in vars_list: T_out = [] # Variable T # Convert back to Celsius for output T_vals = vals_dict['T'] vals_dict['T'] = [T - 273.15 for T in T_vals] else: # Convert to Kelvin for output (matching R) T_out = args['T'] if 'P' in vars_list: P_out = [] # Variable P else: P_out = args['P'] # Build output dictionary matching R CHNOSZ structure result = { 'fun': 'affinity', 'args': { **args_orig, 'property': property_name, 'exceed_Ttr': kwargs.get('exceed_Ttr', False), 'exceed_rhomin': kwargs.get('exceed_rhomin', False), 'return_buffer': kwargs.get('return_buffer', False), 'balance': kwargs.get('balance', 'PBB') }, 'sout': energy_sout, 'property': property_name, 'basis': basis_df, 'species': species_df, 'T': T_out, 'P': P_out, 'vars': vars_list_display, # Use display version with 'Eh', 'pH', 'pe' for output 'vals': vals_dict, 'values': affinity_values } return resultCalculate affinities of formation reactions.
This function calculates chemical affinities for the formation reactions of species of interest from user-selected basis species. The affinities are calculated as A/2.303RT where A is the chemical affinity.
Parameters
messages:bool, defaultTrue- Whether to print informational messages
basis:pd.DataFrame, optional- Basis species definition to use (if not using global basis)
species:pd.DataFrame, optional- Species definition to use (if not using global species)
iprotein:int, listofint,orarray, optional- Build proteins from residues (row numbers in thermo().protein)
loga_protein:floatorlistoffloat, default0.0- Activity of proteins (log scale)
**kwargs:dict- Variable arguments defining calculation conditions: - Basis species names (e.g., CO2=[-60, 20, 5]): Variable basis species activities - T : float or list, Temperature in °C - P : float or list, Pressure in bar - property : str, Property to calculate ("A", "logK", "G", etc.) - exceed_Ttr : bool, Allow extrapolation beyond transition temperatures - exceed_rhomin : bool, Allow calculations below minimum water density - return_buffer : bool, Return buffer activities - balance : str, Balance method for protein buffers
Returns
dict- Dictionary containing: - fun : str, Function name ("affinity") - args : dict, Arguments used in calculation - sout : dict, Subcrt calculation results - property : str, Property calculated - basis : pd.DataFrame, Basis species definition - species : pd.DataFrame, Species of interest definition - T : float or array, Temperature(s) in Kelvin - P : float or array, Pressure(s) in bar - vars : list, Variable names - vals : dict, Variable values - values : dict, Calculated affinity values by species
Examples
>>> import pychnosz >>> pychnosz.reset() >>> pychnosz.basis(["CO2", "H2O", "NH3", "H2S", "H+", "O2"]) >>> pychnosz.species(["glycine", "tyrosine", "serine", "methionine"]) >>> result = pychnosz.affinity(CO2=[-60, 20, 5], T=350, P=2000) >>> print(result['values'][1566]) # Glycine affinities>>> # With proteins >>> import pandas as pd >>> aa = pd.read_csv("POLG.csv") >>> iprotein = pychnosz.add_protein(aa) >>> pychnosz.basis("CHNOSe") >>> a = pychnosz.affinity(iprotein=iprotein, pH=[2, 14], Eh=[-1, 1])Notes
This implementation maintains complete fidelity to R CHNOSZ affinity(): - Identical argument processing including dynamic basis species parameters - Same variable expansion and multi-dimensional calculations - Exact energy() function behavior for property calculations - Identical output structure and formatting - Support for protein calculations via iprotein parameter
def basis(species: str | int | List[str | int] | None = None,
state: str | List[str] | None = None,
logact: float | List[float] | None = None,
delete: bool = False,
add: bool = False,
messages: bool = True,
global_state: bool = True) ‑> pandas.core.frame.DataFrame | None-
Expand source code
def basis(species: Optional[Union[str, int, List[Union[str, int]]]] = None, state: Optional[Union[str, List[str]]] = None, logact: Optional[Union[float, List[float]]] = None, delete: bool = False, add: bool = False, messages: bool = True, global_state: bool = True) -> Optional[pd.DataFrame]: """ Set up the basis species of a thermodynamic system. Parameters ---------- species : str, int, list, or None Species name(s), formula(s), or index(es), or preset keyword. If None, returns current basis definition. state : str, list of str, or None Physical state(s) for the species logact : float, list of float, or None Log activities for the basis species delete : bool, default False If True, delete the basis definition add : bool, default False If True, add to existing basis instead of replacing messages : bool, default True If True, print informational messages about species lookup If False, suppress all output (equivalent to R's suppressMessages()) global_state : bool, default True If True, store basis definition in global thermo().basis (default behavior) If False, return basis definition without storing globally (local state) Returns ------- pd.DataFrame or None Basis species definition DataFrame, or None if deleted Examples -------- >>> # Set up a simple basis >>> basis(["H2O", "CO2", "NH3"], logact=[0, -3, -4]) >>> # Use a preset basis >>> basis("CHNOS") >>> # Add species to existing basis >>> basis("Fe2O3", add=True) >>> # Delete basis >>> basis(delete=True) >>> # Suppress messages >>> basis("CHNOS", messages=False) """ thermo_obj = thermo() # Get current basis old_basis = thermo_obj.basis # Delete basis if requested if delete or species == "": thermo_obj.basis = None thermo_obj.species = None return old_basis # Return current basis if no species specified if species is None: return old_basis # Handle empty species list if isinstance(species, list) and len(species) == 0: raise ValueError("species argument is empty") # Check for preset keywords if isinstance(species, str) and species in _get_preset_basis_keywords(): return preset_basis(species, messages=messages, global_state=global_state) # Ensure species names are unique if isinstance(species, list): if len(set([str(s) for s in species])) != len(species): raise ValueError("species names are not unique") # Process arguments species, state, logact = _process_basis_arguments(species, state, logact) # Handle special transformations species, logact = _handle_special_species(species, logact) # Check if we're modifying existing basis species if (old_basis is not None and not add and _all_species_in_basis(species, old_basis)): if state is not None or logact is not None: return mod_basis(species, state, logact, messages=messages) # Create new basis definition or add to existing if logact is None: logact = [0.0] * len(species) # Get species indices ispecies = _get_species_indices(species, state, messages=messages) # Handle adding to existing basis if add and old_basis is not None: # Check for duplicates existing_indices = old_basis['ispecies'].tolist() for i, idx in enumerate(ispecies): if idx in existing_indices: sp_name = species[i] if isinstance(species[i], str) else str(species[i]) raise BasisError(f"Species {sp_name} is already in the basis definition") # Append to existing basis ispecies = existing_indices + ispecies logact = old_basis['logact'].tolist() + logact # Create new basis new_basis = put_basis(ispecies, logact, global_state=global_state) # Only update global species list if using global state if global_state: # Handle species list when adding if add and thermo_obj.species is not None: _update_species_for_added_basis(old_basis, new_basis) else: # Clear species since basis changed from .species import species as species_func species_func(delete=True) return new_basisSet up the basis species of a thermodynamic system.
Parameters
species:str, int, list,orNone- Species name(s), formula(s), or index(es), or preset keyword. If None, returns current basis definition.
state:str, listofstr,orNone- Physical state(s) for the species
logact:float, listoffloat,orNone- Log activities for the basis species
delete:bool, defaultFalse- If True, delete the basis definition
add:bool, defaultFalse- If True, add to existing basis instead of replacing
messages:bool, defaultTrue- If True, print informational messages about species lookup If False, suppress all output (equivalent to R's suppressMessages())
global_state:bool, defaultTrue- If True, store basis definition in global thermo().basis (default behavior) If False, return basis definition without storing globally (local state)
Returns
pd.DataFrameorNone- Basis species definition DataFrame, or None if deleted
Examples
>>> # Set up a simple basis >>> basis(["H2O", "CO2", "NH3"], logact=[0, -3, -4])>>> # Use a preset basis >>> basis("CHNOS")>>> # Add species to existing basis >>> basis("Fe2O3", add=True)>>> # Delete basis >>> basis(delete=True)>>> # Suppress messages >>> basis("CHNOS", messages=False) def diagram(eout: Dict[str, Any],
type: str = 'auto',
alpha: bool = False,
balance: str | float | List[float] | None = None,
names: List[str] | None = None,
format_names: bool = True,
xlab: str | None = None,
ylab: str | None = None,
xlim: List[float] | None = None,
ylim: List[float] | None = None,
col: str | List[str] | None = None,
col_names: str | List[str] | None = None,
lty: str | int | List | None = None,
lwd: float | List[float] = 1,
cex: float | List[float] = 1.0,
main: str | None = None,
fill: str | None = None,
fill_NA: str = '0.8',
limit_water: bool | None = None,
plot_it: bool = True,
add_to: Dict[str, Any] | None = None,
contour_method: str | List[str] | None = 'edge',
messages: bool = True,
interactive: bool = False,
annotation: str | None = None,
annotation_coords: List[float] = [0, 0],
width: int = 600,
height: int = 520,
save_as: str | None = None,
save_format: str | None = None,
save_scale: float = 1,
normalize: bool | List[bool] = False,
as_residue: bool = False,
**kwargs) ‑> Dict[str, Any]-
Expand source code
def diagram(eout: Dict[str, Any], type: str = "auto", alpha: bool = False, balance: Optional[Union[str, float, List[float]]] = None, names: Optional[List[str]] = None, format_names: bool = True, xlab: Optional[str] = None, ylab: Optional[str] = None, xlim: Optional[List[float]] = None, ylim: Optional[List[float]] = None, col: Optional[Union[str, List[str]]] = None, col_names: Optional[Union[str, List[str]]] = None, lty: Optional[Union[str, int, List]] = None, lwd: Union[float, List[float]] = 1, cex: Union[float, List[float]] = 1.0, main: Optional[str] = None, fill: Optional[str] = None, fill_NA: str = "0.8", limit_water: Optional[bool] = None, plot_it: bool = True, add_to: Optional[Dict[str, Any]] = None, contour_method: Optional[Union[str, List[str]]] = "edge", messages: bool = True, interactive: bool = False, annotation: Optional[str] = None, annotation_coords: List[float] = [0, 0], width: int = 600, height: int = 520, save_as: Optional[str] = None, save_format: Optional[str] = None, save_scale: float = 1, normalize: Union[bool, List[bool]] = False, as_residue: bool = False, **kwargs) -> Dict[str, Any]: """ Plot equilibrium chemical activity and predominance diagrams. This function creates plots from the output of affinity() or equilibrate(). For 1D diagrams, it produces line plots showing how affinity or activity varies with a single variable. For 2D diagrams, it creates predominance field diagrams. Parameters ---------- eout : dict Output from affinity() or equilibrate() type : str, default "auto" Type of diagram: - "auto" (default): Plot affinity values (A/2.303RT) - "loga.equil": Plot equilibrium activities from equilibrate() - "saturation": Draw affinity=0 contour lines (mineral saturation) - Basis species name (e.g., "O2", "H2O", "CO2"): Plot equilibrium log activity/fugacity of the specified basis species where affinity=0 for each formed species. Useful for Eh-pH diagrams and showing oxygen/water fugacities at equilibrium. alpha : bool or str, default False Plot degree of formation instead of activities? If "balance", scale by balancing coefficients balance : str, float, or list of float, optional Balancing coefficients or method for balancing reactions names : list of str, optional Custom names for species (for labels) format_names : bool, default True Apply formatting to chemical formulas? xlab : str, optional Custom x-axis label ylab : str, optional Custom y-axis label xlim : list of float, optional X-axis limits [min, max] ylim : list of float, optional Y-axis limits [min, max] col : str or list of str, optional Line colors for 1-D plots and boundary lines in 2-D plots (matplotlib color specs) col_names : str or list of str, optional Text colors for field labels in 2-D plots (matplotlib color specs) lty : str, int, or list, optional Line styles (matplotlib linestyle specs) lwd : float or list of float, default 1 Line widths for 1-D plots and boundary lines in 2-D predominance diagrams. Set to 0 to disable borders in 2-D diagrams. If fill is None and lwd > 0, uses white fill with black borders (R CHNOSZ default). cex : float or list of float, default 1.0 Character expansion factor for text labels. Values > 1 make text larger, values < 1 make text smaller. Can be a single value or a list (one per species). Used for contour labels in type="saturation" plots. main : str, optional Plot title fill : str, optional Color palette for 2-D predominance diagrams. Can be any matplotlib colormap name (e.g., 'viridis', 'plasma', 'terrain', 'rainbow', 'Set1', 'tab10', 'Pastel1'). If None, uses discrete colors from the default color cycle. Ignored for 1-D diagrams. fill_NA : str, default "0.8" Color for regions outside water stability limits (water instability regions). Matplotlib color specification (e.g., "0.8" for gray, "#CCCCCC"). Set to "transparent" to disable shading. Default "0.8" matches R's "gray80". limit_water : bool, optional Whether to show water stability limits as shaded regions (default True for 2-D diagrams). If True, also clips the diagram to the water stability region. Set to False to disable water stability shading. plot_it : bool, default True Display the plot? add_to : dict, optional A diagram result dictionary from a previous diagram() call. When provided, this plot will be AUTOMATICALLY COPIED and the new diagram will be added to the copy. This preserves the original plot while creating a modified version. The axes object is extracted from add_to['ax']. This parameter eliminates the need for a separate 'add' boolean - when add_to is provided, the function automatically operates in "add" mode. Example workflow: >>> plot_a = diagram(affinity1, fill='terrain') # Create base plot >>> plot_a1 = diagram(affinity2, add_to=plot_a, col='blue') # Copy and add >>> plot_a2 = diagram(affinity3, add_to=plot_a, col='red') # Copy and add again >>> # plot_a remains unchanged, plot_a1 and plot_a2 are independent modifications contour_method : str or list of str, optional Method for labeling contour lines. Default "edge" labels at plot edges. Can be a single value (applied to all species) or a list (one per species). Set to None, NA, or "" to disable labels (only for type="saturation"). In R CHNOSZ, different methods like "edge", "flattest", "simple" control label placement; in Python, this mainly controls whether labels are shown. interactive : bool, default False Create an interactive plot using Plotly instead of matplotlib? If True, calls diagram_interactive() with the appropriate parameters. annotation : str, optional For interactive plots only. Annotation text to add to the plot. annotation_coords : list of float, default [0, 0] For interactive plots only. Coordinates of annotation, where [0, 0] is bottom left and [1, 1] is top right. width : int, default 600 For interactive plots only. Width of the plot in pixels. height : int, default 520 For interactive plots only. Height of the plot in pixels. save_as : str, optional For interactive plots only. Provide a filename to save this figure. Filetype is determined by `save_format`. save_format : str, optional For interactive plots only. Desired format of saved or downloaded figure. Can be 'png', 'jpg', 'jpeg', 'webp', 'svg', 'pdf', 'eps', 'json', or 'html'. If 'html', an interactive plot will be saved. save_scale : float, default 1 For interactive plots only. Multiply title/legend/axis/canvas sizes by this factor when saving the figure. **kwargs Additional arguments passed to matplotlib plotting functions Returns ------- dict Dictionary containing: - plotvar : str, Variable that was plotted - plotvals : dict, Values that were plotted - names : list, Names used for labels - predominant : array or NA, Predominance matrix (for 2D) - balance : str or list, Balancing coefficients used - n.balance : list, Numerical balancing coefficients - ax : matplotlib.axes.Axes, The axes object used for plotting (if plot_it=True) - fig : matplotlib.figure.Figure, The figure object used for plotting (if plot_it=True) - All original eout contents Examples -------- >>> import pychnosz >>> pychnosz.basis(["Fe2O3", "CO2", "H2O", "NH3", "H2S", "oxygen", "H+"], ... [0, -3, 0, -4, -7, -80, -7]) >>> pychnosz.species(["pyrite", "goethite"]) >>> a = pychnosz.affinity(H2S=[-60, 20, 5], T=25, P=1) >>> d = diagram(a) Notes ----- This implementation is based on R CHNOSZ diagram() function but adapted for Python's matplotlib plotting instead of R's base graphics. The key differences from diagram_from_WORM.py are: - Works directly with Python dict output from affinity() (no rpy2) - Uses matplotlib for 1D plots by default - Can optionally use plotly if requested """ # Handle add_to parameter: automatically copy the provided plot # This extracts the axes object and creates an independent copy # When add_to is provided, we're in "add" mode ax = None add = add_to is not None plot_was_provided = add if add_to is not None: # Make a deep copy of the provided plot to preserve the original plot_copy = copy_plot(add_to) # Extract the axes from the copied plot if 'ax' in plot_copy: ax = plot_copy['ax'] else: raise ValueError("The 'add_to' parameter must contain an 'ax' key (a diagram result dictionary)") # If interactive mode is requested, delegate to diagram_interactive if interactive: df, fig = diagram_interactive( eout=eout, type=type, main=main, borders=lwd, names=names, format_names=format_names, annotation=annotation, annotation_coords=annotation_coords, balance=balance, xlab=xlab, ylab=ylab, fill=fill, width=width, height=height, alpha=alpha, plot_it=plot_it, add=add, ax=ax, col=col, lty=lty, lwd=lwd, cex=cex, contour_method=contour_method, save_as=save_as, save_format=save_format, save_scale=save_scale, messages=messages ) # Return in a format compatible with diagram's normal output # diagram_interactive returns (df, fig), wrap in a dict for consistency # Include eout data so water_lines() can access vars, vals, basis, etc. result = { **eout, # Include all original eout data 'df': df, 'fig': fig, 'ax': fig # For compatibility, store fig in ax key for add=True workflow } return result # Check that eout is valid efun = eout.get('fun', '') if efun not in ['affinity', 'equilibrate', 'solubility']: raise ValueError("'eout' is not the output from affinity(), equilibrate(), or solubility()") # Determine if eout is from affinity() (as opposed to equilibrate()) # Check for both Python naming (loga_equil) and R naming (loga.equil) eout_is_aout = 'loga_equil' not in eout and 'loga.equil' not in eout # Check if type is a basis species name plot_loga_basis = False if type not in ["auto", "saturation", "loga.equil", "loga_equil", "loga.balance", "loga_balance"]: # Check if type matches a basis species name if 'basis' in eout: basis_species = list(eout['basis'].index) if hasattr(eout['basis'], 'index') else [] if type in basis_species: plot_loga_basis = True if alpha: raise ValueError("equilibrium activities of basis species not available with alpha = TRUE") # Handle type="saturation" - requires affinity output if type == "saturation": if not eout_is_aout: raise ValueError("type='saturation' requires output from affinity(), not equilibrate()") # Set eout_is_aout flag eout_is_aout = True # Get number of dimensions # Handle both dict (affinity) and list (equilibrate) values structures if isinstance(eout['values'], dict): first_values = list(eout['values'].values())[0] elif isinstance(eout['values'], list): first_values = eout['values'][0] else: first_values = eout['values'] if hasattr(first_values, 'shape'): nd = len(first_values.shape) elif hasattr(first_values, '__len__'): nd = 1 else: nd = 0 # Single value # For affinity output, get balancing coefficients if eout_is_aout and type == "auto": n_balance, balance = _get_balance(eout, balance, messages) elif eout_is_aout and type == "saturation": # For saturation diagrams, use n_balance = 1 for all species (don't normalize by stoichiometry) if isinstance(eout['values'], dict): n_balance = [1] * len(eout['values']) elif isinstance(eout['values'], list): n_balance = [1] * len(eout['values']) else: n_balance = [1] if balance is None: balance = 1 else: # For equilibrate output, use n_balance from equilibrate if available if 'n_balance' in eout: n_balance = eout['n_balance'] balance = eout.get('balance', 1) else: if isinstance(eout['values'], dict): n_balance = [1] * len(eout['values']) elif isinstance(eout['values'], list): n_balance = [1] * len(eout['values']) else: n_balance = [1] if balance is None: balance = 1 # Determine what to plot plotvals = {} plotvar = eout.get('property', 'A') # Calculate equilibrium log activity/fugacity of basis species if plot_loga_basis: # Find the index of the basis species basis_df = eout['basis'] ibasis = list(basis_df.index).index(type) # Get the logarithm of activity used in the affinity calculation logact = basis_df.iloc[ibasis]['logact'] # Check if logact is numeric try: loga_basis = float(logact) except (ValueError, TypeError): raise ValueError(f"the logarithm of activity for basis species {type} is not numeric - was a buffer selected?") # Get the reaction coefficients for this basis species # eout['species'] is a DataFrame with basis species as columns nu_basis = eout['species'].iloc[:, ibasis].values # Calculate the logarithm of activity where affinity = 0 # loga_equilibrium = loga_basis - affinity / nu_basis plotvals = {} for i, (sp_idx, affinity_vals) in enumerate(eout['values'].items()): plotvals[sp_idx] = loga_basis - affinity_vals / nu_basis[i] plotvar = type # Set n_balance (not used for basis species plots, but needed for compatibility) n_balance = [1] * len(plotvals) if balance is None: balance = 1 elif eout_is_aout: # Plot affinity values divided by balancing coefficients # DEBUG: Check balance application if False: # Set to True for debugging print(f"\nDEBUG: Applying balance to affinity values") print(f" n_balance: {n_balance}") # Handle dict-based values (from affinity) if isinstance(eout['values'], dict): for i, (species_idx, values) in enumerate(eout['values'].items()): if False: # Set to True for debugging print(f" Species {i} (ispecies {species_idx}): values/n_balance[{i}]={n_balance[i]}") plotvals[species_idx] = values / n_balance[i] # Handle list-based values elif isinstance(eout['values'], list): for i, values in enumerate(eout['values']): species_idx = eout['species']['ispecies'].iloc[i] plotvals[species_idx] = values / n_balance[i] if plotvar == 'A': plotvar = 'A/(2.303RT)' if nd == 1: if messages: print(f"diagram: plotting {plotvar} / n.balance") else: # Plot equilibrated activities # Check for both Python naming (loga_equil) and R naming (loga.equil) loga_equil_key = 'loga_equil' if 'loga_equil' in eout else 'loga.equil' loga_equil_list = eout[loga_equil_key] # For equilibrate output, keep plotvals as a dict with INTEGER indices as keys # This preserves the 1:1 correspondence with the species list, including duplicates # Do NOT use ispecies as keys because duplicates would overwrite each other if isinstance(loga_equil_list, list): for i, loga_val in enumerate(loga_equil_list): plotvals[i] = loga_val # Use integer index, not ispecies else: # Already a dict plotvals = loga_equil_list plotvar = 'loga.equil' # Handle alpha (degree of formation) if alpha: # Convert to activities (remove logarithms) # Use numpy arrays for proper element-wise operations act_vals = {} for k, v in plotvals.items(): if isinstance(v, np.ndarray): act_vals[k] = 10**v else: act_vals[k] = np.power(10, v) # Scale by balance if requested if alpha == "balance": species_keys = list(act_vals.keys()) for i, k in enumerate(species_keys): act_vals[k] = act_vals[k] * n_balance[i] # Calculate sum of activities (element-wise for arrays) # Get the first value to determine shape first_val = list(act_vals.values())[0] if isinstance(first_val, np.ndarray): # Multi-dimensional case sum_act = np.zeros_like(first_val) for v in act_vals.values(): sum_act = sum_act + v else: # Single value case sum_act = sum(act_vals.values()) # Calculate alpha (fraction) - element-wise division plotvals = {k: v / sum_act for k, v in act_vals.items()} plotvar = "alpha" # Get species information for labels species_df = eout['species'] if names is None: names = species_df['name'].tolist() # Format chemical names if requested if format_names and not alpha: names = [_format_chemname(name) for name in names] # Prepare for plotting if nd == 0: # 0-D: Bar plot (not implemented yet) raise NotImplementedError("0-D bar plots not yet implemented") elif nd == 1: # 1-D: Line plot result = _plot_1d(eout, plotvals, plotvar, names, n_balance, balance, xlab, ylab, xlim, ylim, col, lty, lwd, main, add, plot_it, ax, width, height, plot_was_provided, **kwargs) elif nd == 2: # 2-D: Predominance diagram or saturation lines # Pass lty and cex through kwargs for saturation plots result = _plot_2d(eout, plotvals, plotvar, names, n_balance, balance, xlab, ylab, xlim, ylim, col, col_names, fill, fill_NA, limit_water, lwd, main, add, plot_it, ax, type, contour_method, messages, width, height, plot_was_provided, lty=lty, cex=cex, **kwargs) else: raise ValueError(f"Cannot create diagram with {nd} dimensions") # Handle Jupyter display behavior # When plot_it=True, we want the figure to display # When plot_it=False, we want to suppress display and close the figure if not plot_it and result is not None and 'fig' in result: # Close the figure to prevent auto-display in Jupyter # The figure is still in the result dict, so users can access it via result['fig'] # but it won't be displayed automatically plt.close(result['fig']) elif plot_it and result is not None and 'fig' in result: # Try to use IPython display if available (for Jupyter notebooks) try: from IPython.display import display display(result['fig']) except (ImportError, NameError): # Not in IPython/Jupyter, regular matplotlib display pass return resultPlot equilibrium chemical activity and predominance diagrams.
This function creates plots from the output of affinity() or equilibrate(). For 1D diagrams, it produces line plots showing how affinity or activity varies with a single variable. For 2D diagrams, it creates predominance field diagrams.
Parameters
eout:dict- Output from affinity() or equilibrate()
type:str, default"auto"- Type of diagram: - "auto" (default): Plot affinity values (A/2.303RT) - "loga.equil": Plot equilibrium activities from equilibrate() - "saturation": Draw affinity=0 contour lines (mineral saturation) - Basis species name (e.g., "O2", "H2O", "CO2"): Plot equilibrium log activity/fugacity of the specified basis species where affinity=0 for each formed species. Useful for Eh-pH diagrams and showing oxygen/water fugacities at equilibrium.
alpha:boolorstr, defaultFalse- Plot degree of formation instead of activities? If "balance", scale by balancing coefficients
balance:str, float,orlistoffloat, optional- Balancing coefficients or method for balancing reactions
names:listofstr, optional- Custom names for species (for labels)
format_names:bool, defaultTrue- Apply formatting to chemical formulas?
xlab:str, optional- Custom x-axis label
ylab:str, optional- Custom y-axis label
xlim:listoffloat, optional- X-axis limits [min, max]
ylim:listoffloat, optional- Y-axis limits [min, max]
col:strorlistofstr, optional- Line colors for 1-D plots and boundary lines in 2-D plots (matplotlib color specs)
col_names:strorlistofstr, optional- Text colors for field labels in 2-D plots (matplotlib color specs)
lty:str, int,orlist, optional- Line styles (matplotlib linestyle specs)
lwd:floatorlistoffloat, default1- Line widths for 1-D plots and boundary lines in 2-D predominance diagrams. Set to 0 to disable borders in 2-D diagrams. If fill is None and lwd > 0, uses white fill with black borders (R CHNOSZ default).
cex:floatorlistoffloat, default1.0- Character expansion factor for text labels. Values > 1 make text larger, values < 1 make text smaller. Can be a single value or a list (one per species). Used for contour labels in type="saturation" plots.
main:str, optional- Plot title
fill:str, optional- Color palette for 2-D predominance diagrams. Can be any matplotlib colormap name (e.g., 'viridis', 'plasma', 'terrain', 'rainbow', 'Set1', 'tab10', 'Pastel1'). If None, uses discrete colors from the default color cycle. Ignored for 1-D diagrams.
fill_NA:str, default"0.8"- Color for regions outside water stability limits (water instability regions). Matplotlib color specification (e.g., "0.8" for gray, "#CCCCCC"). Set to "transparent" to disable shading. Default "0.8" matches R's "gray80".
limit_water:bool, optional- Whether to show water stability limits as shaded regions (default True for 2-D diagrams). If True, also clips the diagram to the water stability region. Set to False to disable water stability shading.
plot_it:bool, defaultTrue- Display the plot?
add_to:dict, optional-
A diagram result dictionary from a previous diagram() call. When provided, this plot will be AUTOMATICALLY COPIED and the new diagram will be added to the copy. This preserves the original plot while creating a modified version. The axes object is extracted from add_to['ax'].
This parameter eliminates the need for a separate 'add' boolean - when add_to is provided, the function automatically operates in "add" mode.
Example workflow:
plot_a = diagram(affinity1, fill='terrain') # Create base plot plot_a1 = diagram(affinity2, add_to=plot_a, col='blue') # Copy and add plot_a2 = diagram(affinity3, add_to=plot_a, col='red') # Copy and add again
plot_a remains unchanged, plot_a1 and plot_a2 are independent modifications
contour_method:strorlistofstr, optional- Method for labeling contour lines. Default "edge" labels at plot edges. Can be a single value (applied to all species) or a list (one per species). Set to None, NA, or "" to disable labels (only for type="saturation"). In R CHNOSZ, different methods like "edge", "flattest", "simple" control label placement; in Python, this mainly controls whether labels are shown.
interactive:bool, defaultFalse- Create an interactive plot using Plotly instead of matplotlib? If True, calls diagram_interactive() with the appropriate parameters.
annotation:str, optional- For interactive plots only. Annotation text to add to the plot.
annotation_coords:listoffloat, default[0, 0]- For interactive plots only. Coordinates of annotation, where [0, 0] is bottom left and [1, 1] is top right.
width:int, default600- For interactive plots only. Width of the plot in pixels.
height:int, default520- For interactive plots only. Height of the plot in pixels.
save_as:str, optional- For interactive plots only. Provide a filename to save this figure.
Filetype is determined by
save_format. save_format:str, optional- For interactive plots only. Desired format of saved or downloaded figure. Can be 'png', 'jpg', 'jpeg', 'webp', 'svg', 'pdf', 'eps', 'json', or 'html'. If 'html', an interactive plot will be saved.
save_scale:float, default1- For interactive plots only. Multiply title/legend/axis/canvas sizes by this factor when saving the figure.
**kwargs- Additional arguments passed to matplotlib plotting functions
Returns
dict- Dictionary containing: - plotvar : str, Variable that was plotted - plotvals : dict, Values that were plotted - names : list, Names used for labels - predominant : array or NA, Predominance matrix (for 2D) - balance : str or list, Balancing coefficients used - n.balance : list, Numerical balancing coefficients - ax : matplotlib.axes.Axes, The axes object used for plotting (if plot_it=True) - fig : matplotlib.figure.Figure, The figure object used for plotting (if plot_it=True) - All original eout contents
Examples
>>> import pychnosz >>> pychnosz.basis(["Fe2O3", "CO2", "H2O", "NH3", "H2S", "oxygen", "H+"], ... [0, -3, 0, -4, -7, -80, -7]) >>> pychnosz.species(["pyrite", "goethite"]) >>> a = pychnosz.affinity(H2S=[-60, 20, 5], T=25, P=1) >>> d = diagram(a)Notes
This implementation is based on R CHNOSZ diagram() function but adapted for Python's matplotlib plotting instead of R's base graphics. The key differences from diagram_from_WORM.py are: - Works directly with Python dict output from affinity() (no rpy2) - Uses matplotlib for 1D plots by default - Can optionally use plotly if requested
def equilibrate(aout: Dict[str, Any],
balance: str | int | List[float] | None = None,
loga_balance: float | List[float] | None = None,
ispecies: List[int] | List[bool] | None = None,
normalize: bool | List[bool] = False,
as_residue: bool = False,
method: str | List[str] | None = None,
tol: float = np.float64(0.0001220703125),
messages: bool = True) ‑> Dict[str, Any]-
Expand source code
def equilibrate(aout: Dict[str, Any], balance: Optional[Union[str, int, List[float]]] = None, loga_balance: Optional[Union[float, List[float]]] = None, ispecies: Optional[Union[List[int], List[bool]]] = None, normalize: Union[bool, List[bool]] = False, as_residue: bool = False, method: Optional[Union[str, List[str]]] = None, tol: float = np.finfo(float).eps ** 0.25, messages: bool = True) -> Dict[str, Any]: """ Calculate equilibrium activities of species from affinities. This function calculates the equilibrium activities of species in (metastable) equilibrium from the affinities of their formation reactions from basis species at given activities. Parameters ---------- aout : dict Output from affinity() containing chemical affinities balance : str, int, or list of float, optional Balancing method: - None: Autoselect using which_balance() - str: Name of basis species to balance on - "length": Balance on protein length (for proteins) - "volume": Balance on standard-state volume - 1: Balance on one mole of species (formula units) - list: User-defined balancing coefficients loga_balance : float or list of float, optional Logarithm of total activity of the balancing basis species If None, calculated from species initial activities and n.balance ispecies : list of int or list of bool, optional Indices or boolean mask of species to include in equilibration Default: all species except those with state "cr" (crystalline) normalize : bool or list of bool, default False Normalize formulas by balancing coefficients? as_residue : bool, default False Use residue basis for proteins? method : str or list of str, optional Equilibration method: - "boltzmann": Boltzmann distribution (for n.balance = 1) - "reaction": Reaction-based equilibration (general method) If None, chooses "boltzmann" if all n.balance == 1, else "reaction" tol : float, default np.finfo(float).eps**0.25 Tolerance for root-finding in reaction method messages : bool, default True Whether to print informational messages Returns ------- dict Dictionary containing all aout contents plus: - balance : str or list, Balancing description - m_balance : list, Molar formula divisors - n_balance : list, Balancing coefficients - loga_balance : float or array, Log activity of balanced quantity - Astar : list of arrays, Normalized affinities - loga_equil : list of arrays, Equilibrium log activities Examples -------- >>> import pychnosz >>> pychnosz.basis("CHNOS") >>> pychnosz.basis("NH3", -2) >>> pychnosz.species(["alanine", "glycine", "serine"]) >>> a = pychnosz.affinity(NH3=[-80, 60], T=55, P=2000) >>> e = pychnosz.equilibrate(a, balance="CO2") Notes ----- This is a 1:1 replica of the R CHNOSZ equilibrate() function. - Handles both Boltzmann and reaction-based equilibration - Supports normalization and residue basis for proteins - Properly handles crystalline species via predominance diagrams - Implements identical balancing logic to R version """ # Handle mosaic output (not implemented yet, but keep structure) if aout.get('fun') == 'mosaic': raise NotImplementedError("mosaic equilibration not yet implemented") # Number of possible species # affinity() returns values as a dict with ispecies as keys if isinstance(aout['values'], dict): # Convert dict to list ordered by species dataframe values_list = [] for i in range(len(aout['species'])): species_idx = aout['species']['ispecies'].iloc[i] if species_idx in aout['values']: values_list.append(aout['values'][species_idx]) else: # Species not in values dict - use NaN array values_list.append(np.array([np.nan])) aout['values'] = values_list nspecies = len(aout['values']) # Get the balancing coefficients bout = _balance(aout, balance, messages) n_balance_orig = bout['n_balance'].copy() n_balance = bout['n_balance'].copy() balance = bout['balance'] # If solids (cr) species are present, find them on a predominance diagram iscr = [('cr' in str(state)) for state in aout['species']['state']] ncr = sum(iscr) # Set default ispecies to exclude cr species (matching R default) if ispecies is None: ispecies = [not is_cr for is_cr in iscr] if ncr > 0: # Import diagram here to avoid circular imports from .diagram import diagram dout = diagram(aout, balance=balance, normalize=normalize, as_residue=as_residue, plot_it=False, limit_water=False, messages=messages) if ncr == nspecies: # We get here if there are only solids m_balance = None Astar = None loga_equil = [] for i in range(len(aout['values'])): la = np.array(aout['values'][i], copy=True) la[:] = np.nan loga_equil.append(la) else: # We get here if there are any aqueous species # Take selected species in 'ispecies' if len(ispecies) == 0: raise ValueError("the length of ispecies is zero") # Convert boolean to indices if needed if isinstance(ispecies, list) and len(ispecies) > 0: if isinstance(ispecies[0], bool): ispecies = [i for i, x in enumerate(ispecies) if x] # Take out species that have NA affinities ina = [all(np.isnan(np.array(x).flatten())) for x in aout['values']] ispecies = [i for i in ispecies if not ina[i]] if len(ispecies) == 0: raise ValueError("all species have NA affinities") if ispecies != list(range(nspecies)): if messages: print(f"equilibrate: using {len(ispecies)} of {nspecies} species") aout_species_df = aout['species'] aout['species'] = aout_species_df.iloc[ispecies].reset_index(drop=True) aout['values'] = [aout['values'][i] for i in ispecies] n_balance = [n_balance[i] for i in ispecies] # Number of species that are left nspecies = len(aout['values']) # Say what the balancing coefficients are if len(n_balance) < 100: if messages: print(f"equilibrate: n.balance is {', '.join(map(str, n_balance))}") # Logarithm of total activity of the balancing basis species if loga_balance is None: # Sum up the activities, then take absolute value # in case n.balance is negative logact = np.array([aout['species']['logact'].iloc[i] for i in range(len(aout['species']))]) sumact = abs(sum(10**logact * n_balance)) loga_balance = np.log10(sumact) # Make loga.balance the same length as the values of affinity if isinstance(loga_balance, (int, float)): loga_balance = float(loga_balance) else: loga_balance = np.array(loga_balance).flatten() nvalues = len(np.array(aout['values'][0]).flatten()) if isinstance(loga_balance, float) or len(np.atleast_1d(loga_balance)) == 1: # We have a constant loga.balance if isinstance(loga_balance, np.ndarray): loga_balance = float(loga_balance[0]) if messages: print(f"equilibrate: loga.balance is {loga_balance}") loga_balance = np.full(nvalues, loga_balance) else: # We are using a variable loga.balance (supplied by the user) if len(loga_balance) != nvalues: raise ValueError(f"length of loga.balance ({len(loga_balance)}) doesn't match " f"the affinity values ({nvalues})") if messages: print(f"equilibrate: loga.balance has same length as affinity values ({len(loga_balance)})") # Normalize the molar formula by the balance coefficients m_balance = n_balance.copy() isprotein = ['_' in str(name) for name in aout['species']['name']] # Handle normalize parameter if isinstance(normalize, bool): normalize = [normalize] * nspecies elif not isinstance(normalize, list): normalize = list(normalize) if any(normalize) or as_residue: if any(n < 0 for n in n_balance): raise ValueError("one or more negative balancing coefficients prohibit using normalized molar formulas") for i in range(nspecies): if normalize[i] or as_residue: n_balance[i] = 1 if as_residue: if messages: print("equilibrate: using 'as.residue' for molar formulas") else: if messages: print("equilibrate: using 'normalize' for molar formulas") # Set the formula divisor (m.balance) to 1 for species whose formulas are *not* normalized m_balance = [m_balance[i] if (normalize[i] or as_residue) else 1 for i in range(nspecies)] else: m_balance = [1] * nspecies # Astar: the affinities/2.303RT of formation reactions with # formed species in their standard-state activities Astar = [] for i in range(nspecies): # 'starve' the affinity of the activity of the species, # and normalize the value by the molar ratio logact_i = aout['species']['logact'].iloc[i] astar_i = (np.array(aout['values'][i]) + logact_i) / m_balance[i] Astar.append(astar_i) # Choose a method and compute the equilibrium activities of species if method is None: if all(n == 1 for n in n_balance): method = ["boltzmann"] else: method = ["reaction"] elif isinstance(method, str): method = [method] if messages: print(f"equilibrate: using {method[0]} method") if method[0] == "boltzmann": loga_equil = equil_boltzmann(Astar, n_balance, loga_balance) elif method[0] == "reaction": loga_equil = equil_reaction(Astar, n_balance, loga_balance, tol) else: raise ValueError(f"unknown method: {method[0]}") # If we normalized the formulas, get back to activities of species if any(normalize) and not as_residue: loga_equil = [loga_equil[i] - np.log10(m_balance[i]) for i in range(nspecies)] # Process cr species if ncr > 0: # cr species were excluded from equilibrium calculation, # so get values back to original lengths norig = len(dout['values']) n_balance = n_balance_orig # Ensure ispecies is in index form (not boolean) # When ncr == nspecies, ispecies was never converted from boolean to indices if isinstance(ispecies, list) and len(ispecies) > 0: if isinstance(ispecies[0], bool): ispecies = [i for i, x in enumerate(ispecies) if x] # Match indices back to original imatch = [None] * norig for j, orig_idx in enumerate(range(norig)): if orig_idx in ispecies: imatch[orig_idx] = ispecies.index(orig_idx) # Handle None values (when ncr == nspecies, these are set to None) # In R, indexing NULL returns NULL, so we need to check for None in Python if m_balance is not None: m_balance = [m_balance[imatch[i]] if imatch[i] is not None else None for i in range(norig)] if Astar is not None: Astar = [Astar[imatch[i]] if imatch[i] is not None else None for i in range(norig)] # Get a template from first loga_equil to determine shape loga_equil1 = loga_equil[0] loga_equil_orig = [None] * norig for i in range(norig): if imatch[i] is not None: loga_equil_orig[i] = loga_equil[imatch[i]] # Replace None loga_equil with -999 for cr-only species (will be set to 0 where predominant) # Use np.full with shape, not full_like, to avoid inheriting NaN values ina = [i for i in range(norig) if imatch[i] is None] for i in ina: loga_equil_orig[i] = np.full(loga_equil1.shape, -999.0) loga_equil = loga_equil_orig aout['species'] = dout['species'] aout['values'] = dout['values'] # Find the grid points where any cr species is predominant icr = [i for i in range(len(dout['species'])) if 'cr' in str(dout['species']['state'].iloc[i])] # predominant uses 1-based R indexing (1, 2, 3, ...), convert to 0-based for Python predominant = dout['predominant'] iscr_mask = np.zeros_like(predominant, dtype=bool) for icr_idx in icr: # Compare with icr_idx + 1 because predominant is 1-based iscr_mask |= (predominant == icr_idx + 1) # At those grid points, make the aqueous species' activities practically zero for i in range(norig): if i not in icr: loga_equil[i] = np.array(loga_equil[i], copy=True) loga_equil[i][iscr_mask] = -999 # At the grid points where cr species predominate, set their loga_equil to 0 (standard state) for i in icr: # Compare with i + 1 because predominant is 1-based ispredom = (predominant == i + 1) loga_equil[i] = np.array(loga_equil[i], copy=True) # Set to standard state activity (logact, typically 0) where predominant loga_equil[i][ispredom] = dout['species']['logact'].iloc[i] # Put together the output out = aout.copy() out['fun'] = 'equilibrate' # Mark this as equilibrate output out['balance'] = balance out['m_balance'] = m_balance out['n_balance'] = n_balance out['loga_balance'] = loga_balance out['Astar'] = Astar out['loga_equil'] = loga_equil return outCalculate equilibrium activities of species from affinities.
This function calculates the equilibrium activities of species in (metastable) equilibrium from the affinities of their formation reactions from basis species at given activities.
Parameters
aout:dict- Output from affinity() containing chemical affinities
balance:str, int,orlistoffloat, optional- Balancing method: - None: Autoselect using which_balance() - str: Name of basis species to balance on - "length": Balance on protein length (for proteins) - "volume": Balance on standard-state volume - 1: Balance on one mole of species (formula units) - list: User-defined balancing coefficients
loga_balance:floatorlistoffloat, optional- Logarithm of total activity of the balancing basis species If None, calculated from species initial activities and n.balance
ispecies:listofintorlistofbool, optional- Indices or boolean mask of species to include in equilibration Default: all species except those with state "cr" (crystalline)
normalize:boolorlistofbool, defaultFalse- Normalize formulas by balancing coefficients?
as_residue:bool, defaultFalse- Use residue basis for proteins?
method:strorlistofstr, optional- Equilibration method: - "boltzmann": Boltzmann distribution (for n.balance = 1) - "reaction": Reaction-based equilibration (general method) If None, chooses "boltzmann" if all n.balance == 1, else "reaction"
tol:float, defaultnp.finfo(float).eps**0.25- Tolerance for root-finding in reaction method
messages:bool, defaultTrue- Whether to print informational messages
Returns
dict- Dictionary containing all aout contents plus: - balance : str or list, Balancing description - m_balance : list, Molar formula divisors - n_balance : list, Balancing coefficients - loga_balance : float or array, Log activity of balanced quantity - Astar : list of arrays, Normalized affinities - loga_equil : list of arrays, Equilibrium log activities
Examples
>>> import pychnosz >>> pychnosz.basis("CHNOS") >>> pychnosz.basis("NH3", -2) >>> pychnosz.species(["alanine", "glycine", "serine"]) >>> a = pychnosz.affinity(NH3=[-80, 60], T=55, P=2000) >>> e = pychnosz.equilibrate(a, balance="CO2")Notes
This is a 1:1 replica of the R CHNOSZ equilibrate() function. - Handles both Boltzmann and reaction-based equilibration - Supports normalization and residue basis for proteins - Properly handles crystalline species via predominance diagrams - Implements identical balancing logic to R version
def find_species(name: str, state: str | None = None, messages: bool = True) ‑> int-
Expand source code
def find_species(name: str, state: Optional[str] = None, messages: bool = True) -> int: """ Find a single species index by name. Parameters ---------- name : str Species name, formula, or abbreviation state : str, optional Physical state messages : bool, default True If True, print informational messages Returns ------- int Species index (1-based) Raises ------ ValueError If species not found or multiple matches """ result = info(name, state, messages=messages) if pd.isna(result): raise ValueError(f"Species '{name}' not found") if isinstance(result, list): if len(result) > 1: raise ValueError(f"Multiple matches found for '{name}'") result = result[0] return int(result)Find a single species index by name.
Parameters
name:str- Species name, formula, or abbreviation
state:str, optional- Physical state
messages:bool, defaultTrue- If True, print informational messages
Returns
int- Species index (1-based)
Raises
ValueError- If species not found or multiple matches
def get_basis() ‑> pandas.core.frame.DataFrame | None-
Expand source code
def get_basis() -> Optional[pd.DataFrame]: """ Get current basis definition. Returns ------- pd.DataFrame or None Current basis definition """ return thermo().basisGet current basis definition.
Returns
pd.DataFrameorNone- Current basis definition
def get_species() ‑> pandas.core.frame.DataFrame | None-
Expand source code
def get_species() -> Optional[pd.DataFrame]: """ Get current species definition. Returns ------- pd.DataFrame or None Current species definition """ return thermo().speciesGet current species definition.
Returns
pd.DataFrameorNone- Current species definition
def get_species_data(species: str | int, state: str | None = None, messages: bool = True) ‑> pandas.core.frame.DataFrame-
Expand source code
def get_species_data(species: Union[str, int], state: Optional[str] = None, messages: bool = True) -> pd.DataFrame: """ Get complete thermodynamic data for a species. Parameters ---------- species : str or int Species name/formula or index state : str, optional Physical state messages : bool, default True Display messages? Returns ------- pd.DataFrame Species thermodynamic data """ if isinstance(species, str): species = find_species(species, state) return info(species, messages=messages)Get complete thermodynamic data for a species.
Parameters
species:strorint- Species name/formula or index
state:str, optional- Physical state
messages:bool, defaultTrue- Display messages?
Returns
pd.DataFrame- Species thermodynamic data
def info(species: str | int | List[str | int] | pandas.core.series.Series | None = None,
state: str | List[str] | None = None,
check_it: bool = True,
messages: bool = True) ‑> pandas.core.frame.DataFrame | int | List[int] | None-
Expand source code
def info(species: Optional[Union[str, int, List[Union[str, int]], pd.Series]] = None, state: Optional[Union[str, List[str]]] = None, check_it: bool = True, messages: bool = True) -> Union[pd.DataFrame, int, List[int], None]: """ Search for species in the thermodynamic database. Parameters ---------- species : str, int, list of str/int, pd.Series, or None Species name, formula, abbreviation, or OBIGT index. Can also be a pandas Series (e.g., from retrieve()). If None, returns summary information about the database. state : str, list of str, or None Physical state(s) to match ('aq', 'cr', 'gas', 'liq') check_it : bool, default True Whether to perform consistency checks on thermodynamic data messages : bool, default True Whether to print informational messages Returns ------- pd.DataFrame, int, list of int, or None - If species is None: prints database summary, returns None - If species is numeric: returns DataFrame with species data - If species is string: returns species index(es) or NA if not found Examples -------- >>> # Get database summary >>> info() >>> # Find species index >>> info("H2O") >>> # Get species data by index >>> info(1) >>> # Search with specific state >>> info("CO2", "aq") >>> # Use output from retrieve() >>> zn_species = retrieve("Zn", ["O", "H"], state="aq") >>> info(zn_species) """ thermo_obj = thermo() # Initialize database if needed if not thermo_obj.is_initialized(): thermo_obj.reset() # Return database summary if no species specified if species is None: return _print_database_summary(thermo_obj, messages) # Handle pandas Series (e.g., from retrieve()) if isinstance(species, pd.Series): # Extract the integer indices from the Series values indices = species.values.tolist() return _info_numeric(indices, thermo_obj, check_it, messages) # Handle numeric species indices if isinstance(species, (int, list)) and all(isinstance(s, int) for s in (species if isinstance(species, list) else [species])): return _info_numeric(species, thermo_obj, check_it, messages) # Handle string species names/formulas if isinstance(species, (str, list)): return _info_character(species, state, thermo_obj, messages) raise ValueError(f"Invalid species type: {type(species)}")Search for species in the thermodynamic database.
Parameters
species:str, int, listofstr/int, pd.Series,orNone- Species name, formula, abbreviation, or OBIGT index. Can also be a pandas Series (e.g., from retrieve()). If None, returns summary information about the database.
state:str, listofstr,orNone- Physical state(s) to match ('aq', 'cr', 'gas', 'liq')
check_it:bool, defaultTrue- Whether to perform consistency checks on thermodynamic data
messages:bool, defaultTrue- Whether to print informational messages
Returns
pd.DataFrame, int, listofint,orNone-
- If species is None: prints database summary, returns None
- If species is numeric: returns DataFrame with species data
- If species is string: returns species index(es) or NA if not found
Examples
>>> # Get database summary >>> info()>>> # Find species index >>> info("H2O")>>> # Get species data by index >>> info(1)>>> # Search with specific state >>> info("CO2", "aq")>>> # Use output from retrieve() >>> zn_species = retrieve("Zn", ["O", "H"], state="aq") >>> info(zn_species) def is_basis_defined() ‑> bool-
Expand source code
def is_basis_defined() -> bool: """ Check if basis is currently defined. Returns ------- bool True if basis is defined """ return thermo().basis is not NoneCheck if basis is currently defined.
Returns
bool- True if basis is defined
def is_species_defined() ‑> bool-
Expand source code
def is_species_defined() -> bool: """ Check if species are currently defined. Returns ------- bool True if species are defined """ return thermo().species is not NoneCheck if species are currently defined.
Returns
bool- True if species are defined
def list_species(pattern: str | None = None, state: str | None = None) ‑> pandas.core.frame.DataFrame-
Expand source code
def list_species(pattern: Optional[str] = None, state: Optional[str] = None) -> pd.DataFrame: """ List species matching criteria. Parameters ---------- pattern : str, optional Pattern to match in species names state : str, optional Physical state to filter by Returns ------- pd.DataFrame Matching species information """ thermo_obj = thermo() if not thermo_obj.is_initialized(): thermo_obj.reset() obigt = thermo_obj.obigt.copy() # Filter by state if state is not None: obigt = obigt[obigt['state'] == state] # Filter by pattern if pattern is not None: mask = obigt['name'].str.contains(pattern, case=False, na=False) obigt = obigt[mask] # Return relevant columns columns = ['name', 'formula', 'state', 'ref1', 'model'] return obigt[columns].reset_index(drop=True)List species matching criteria.
Parameters
pattern:str, optional- Pattern to match in species names
state:str, optional- Physical state to filter by
Returns
pd.DataFrame- Matching species information
def n_species() ‑> int-
Expand source code
def n_species() -> int: """ Get number of defined species. Returns ------- int Number of defined species """ species_df = get_species() return len(species_df) if species_df is not None else 0Get number of defined species.
Returns
int- Number of defined species
def preset_basis(key: str | None = None, messages: bool = True, global_state: bool = True) ‑> List[str] | pandas.core.frame.DataFrame-
Expand source code
def preset_basis(key: Optional[str] = None, messages: bool = True, global_state: bool = True) -> Union[List[str], pd.DataFrame]: """ Load a preset basis definition by keyword. Parameters ---------- key : str or None Preset keyword. If None, returns available keywords. messages : bool, default True If True, print informational messages global_state : bool, default True If True, store in global thermo().basis (default) If False, return without storing globally Returns ------- list of str or pd.DataFrame Available keywords or basis definition Examples -------- >>> # List available presets >>> preset_basis() >>> # Load CHNOS basis >>> preset_basis("CHNOS") """ keywords = _get_preset_basis_keywords() if key is None: return keywords if key not in keywords: raise ValueError(f"{key} is not a keyword for preset basis species") # Clear existing basis only if using global state if global_state: basis(delete=True) # Define preset species species_map = { "CHNOS": ["CO2", "H2O", "NH3", "H2S", "oxygen"], "CHNOS+": ["CO2", "H2O", "NH3", "H2S", "oxygen", "H+"], "CHNOSe": ["CO2", "H2O", "NH3", "H2S", "e-", "H+"], "CHNOPS+": ["CO2", "H2O", "NH3", "H3PO4", "H2S", "oxygen", "H+"], "CHNOPSe": ["CO2", "H2O", "NH3", "H3PO4", "H2S", "e-", "H+"], "MgCHNOPS+": ["Mg+2", "CO2", "H2O", "NH3", "H3PO4", "H2S", "oxygen", "H+"], "MgCHNOPSe": ["Mg+2", "CO2", "H2O", "NH3", "H3PO4", "H2S", "e-", "H+"], "FeCHNOS": ["Fe2O3", "CO2", "H2O", "NH3", "H2S", "oxygen"], "FeCHNOS+": ["Fe2O3", "CO2", "H2O", "NH3", "H2S", "oxygen", "H+"], "QEC4": ["glutamine", "glutamic acid", "cysteine", "H2O", "oxygen"], "QEC": ["glutamine", "glutamic acid", "cysteine", "H2O", "oxygen"], "QEC+": ["glutamine", "glutamic acid", "cysteine", "H2O", "oxygen", "H+"], "QCa": ["glutamine", "cysteine", "acetic acid", "H2O", "oxygen"], "QCa+": ["glutamine", "cysteine", "acetic acid", "H2O", "oxygen", "H+"] } species = species_map[key] logact = _preset_logact(species) # Special case for QEC4 if key == "QEC4": logact[:3] = [-4.0] * 3 return basis(species, logact=logact, messages=messages, global_state=global_state)Load a preset basis definition by keyword.
Parameters
key:strorNone- Preset keyword. If None, returns available keywords.
messages:bool, defaultTrue- If True, print informational messages
global_state:bool, defaultTrue- If True, store in global thermo().basis (default) If False, return without storing globally
Returns
listofstrorpd.DataFrame- Available keywords or basis definition
Examples
>>> # List available presets >>> preset_basis()>>> # Load CHNOS basis >>> preset_basis("CHNOS") def retrieve(elements: str | List[str] | Tuple[str] | None = None,
ligands: str | List[str] | Tuple[str] | None = None,
state: str | List[str] | Tuple[str] | None = None,
T: float | List[float] | None = None,
P: str | float | List[float] = 'Psat',
add_charge: bool = True,
hide_groups: bool = True,
messages: bool = True) ‑> pandas.core.series.Series-
Expand source code
def retrieve(elements: Optional[Union[str, List[str], Tuple[str]]] = None, ligands: Optional[Union[str, List[str], Tuple[str]]] = None, state: Optional[Union[str, List[str], Tuple[str]]] = None, T: Optional[Union[float, List[float]]] = None, P: Union[str, float, List[float]] = "Psat", add_charge: bool = True, hide_groups: bool = True, messages: bool = True) -> pd.Series: """ Retrieve species containing specified elements. Parameters ---------- elements : str, list of str, or tuple of str, optional Elements in a chemical system. If `elements` is a string, retrieve species containing that element. E.g., `retrieve("Au")` will return all species containing Au. If `elements` is a list, retrieve species that have all of the elements in the list. E.g., `retrieve(["Au", "Cl"])` will return all species that have both Au and Cl. If `elements` is a tuple, retrieve species relevant to the system, including charged species. E.g., `retrieve(("Au", "Cl"))` will return species that have Au and/or Cl, including charged species, but no other elements. ligands : str, list of str, or tuple of str, optional Elements present in any ligands. This affects the species search: - If ligands is a state ('cr', 'liq', 'gas', 'aq'), use that as the state filter - Otherwise, include elements in the system defined by ligands state : str, list of str, or tuple of str, optional Filter the result on these state(s) ('aq', 'cr', 'gas', 'liq'). T : float or list of float, optional Temperature (K) for filtering species with non-NA Gibbs energy. P : str, float, or list of float, default "Psat" Pressure for Gibbs energy calculation. Default is "Psat" (saturation). add_charge : bool, default True For chemical systems (tuple input), automatically include charge (Z). hide_groups : bool, default True Exclude group species (names in brackets like [CH2]). messages : bool, default True Print informational messages. If False, suppress messages about updating the stoichiometric matrix and other information. Returns ------- pd.Series Series of species indices (1-based) with chemical formulas as index. This behaves like R's named vector - you can access by name or position. Names are chemical formulas (or 'e-' for electrons). Values are species indices that match the criteria. Examples -------- >>> # All species containing Au >>> retrieve("Au") >>> # All species that have both Au and Cl >>> retrieve(["Au", "Cl"]) >>> # Au-Cl system: species with Au and/or Cl, including charged species >>> retrieve(("Au", "Cl")) >>> # All Au-bearing species in the Au-Cl system >>> retrieve("Au", ("Cl",)) >>> # All uncharged Au-bearing species in the Au-Cl system >>> retrieve("Au", ("Cl",), add_charge=False) >>> # Minerals in the system SiO2-MgO-CaO-CO2 >>> retrieve(("Si", "Mg", "Ca", "C", "O"), state="cr") Notes ----- This function uses 1-based indexing to match R CHNOSZ conventions. The returned indices are labels that can be used with .loc[], not positions. """ # Empty argument handling if elements is None: return pd.Series([], dtype=int) thermo_obj = thermo() # Initialize database if needed if not thermo_obj.is_initialized(): thermo_obj.reset() ## Stoichiometric matrix # Get stoichiometric matrix from thermo object stoich = _get_or_update_stoich(thermo_obj, messages=messages) ## Generate error for missing element(s) allelements = [] if elements is not None: if isinstance(elements, (list, tuple)): allelements.extend(elements) else: allelements.append(elements) if ligands is not None: if isinstance(ligands, (list, tuple)): allelements.extend(ligands) else: allelements.append(ligands) not_present = [elem for elem in allelements if elem not in stoich.columns and elem != "all"] if not_present: if len(not_present) == 1: raise ValueError(f'"{not_present[0]}" is not an element that is present in any species in the database') else: raise ValueError(f'"{", ".join(not_present)}" are not elements that are present in any species in the database') ## Handle 'ligands' argument if ligands is not None: # If 'ligands' is cr, liq, gas, or aq, use that as the state if ligands in ['cr', 'liq', 'gas', 'aq']: state = ligands ispecies = retrieve(elements, add_charge=add_charge, messages=messages) else: # Include the element in the system defined by the ligands list # Convert ligands to tuple if it's a string or list if isinstance(ligands, str): ligands_tuple = (ligands,) elif isinstance(ligands, list): ligands_tuple = tuple(ligands) else: ligands_tuple = ligands # Combine elements with ligands if isinstance(elements, str): combined = (elements,) + ligands_tuple elif isinstance(elements, list): combined = tuple(elements) + ligands_tuple else: combined = elements + ligands_tuple # Call retrieve() for each argument and take the intersection r1 = retrieve(elements, add_charge=add_charge, messages=messages) r2 = retrieve(combined, add_charge=add_charge, messages=messages) ispecies = np.intersect1d(r1, r2) else: ## Species identification ispecies_list = [] # Determine if elements is a tuple (chemical system) is_system = isinstance(elements, tuple) # Convert single string to list for iteration if isinstance(elements, str): elements_iter = [elements] else: elements_iter = list(elements) # Automatically add charge to a system if add_charge and is_system and "Z" not in elements_iter: elements_iter.append("Z") # Proceed element-by-element for element in elements_iter: if element == "all": ispecies_list.append(np.array(thermo_obj.obigt.index.tolist())) else: # Identify the species that have the element has_element = (stoich[element] != 0) ispecies_list.append(np.array(stoich.index[has_element].tolist())) # Now we have a list of ispecies (one array for each element) # What we do next depends on whether the argument is a tuple or not if is_system: # For a chemical system, all species are included that do not contain any other elements ispecies = np.unique(np.concatenate(ispecies_list)) # Get columns not in elements other_columns = [col for col in stoich.columns if col not in elements_iter] if other_columns: # Check which species have other elements otherstoich = stoich.loc[ispecies, other_columns] iother = (otherstoich != 0).any(axis=1) ispecies = ispecies[~iother.values] else: # Get species that have all the elements; the species must be present in each array # This is the intersection of all arrays ispecies = ispecies_list[0] for arr in ispecies_list[1:]: ispecies = np.intersect1d(ispecies, arr) # Exclude groups if hide_groups: obigt = thermo_obj.obigt names = obigt.loc[ispecies, 'name'].values is_group = np.array([bool(re.match(r'^\[.*\]$', str(name))) for name in names]) ispecies = ispecies[~is_group] # Filter on state if state is not None: obigt = thermo_obj.obigt # Ensure state is a list if isinstance(state, str): state_list = [state] elif isinstance(state, tuple): state_list = list(state) else: state_list = state species_states = obigt.loc[ispecies, 'state'].values istate = np.array([s in state_list for s in species_states]) ispecies = ispecies[istate] # Require non-NA Delta G0 at specific temperature if T is not None: from .subcrt import subcrt # Suppress warnings and (optionally) messages with warnings.catch_warnings(): warnings.simplefilter("ignore") try: result = subcrt(ispecies.tolist(), T=T, P=P, messages=False, show=False) if result is not None and 'out' in result: G_values = [] for species_out in result['out']: if isinstance(species_out, dict) and 'G' in species_out: G = species_out['G'] if isinstance(G, (list, np.ndarray)): G_values.append(G[0] if len(G) > 0 else np.nan) else: G_values.append(G) else: G_values.append(np.nan) # Filter out species with NA G values has_G = np.array([not pd.isna(g) for g in G_values]) ispecies = ispecies[has_G] except: # If subcrt fails, keep all species pass # Create a pandas Series with formula names (R-style named vector) obigt = thermo_obj.obigt formulas = obigt.loc[ispecies, 'formula'].values # Use e- instead of (Z-1) for electron formulas = np.array([f if f != '(Z-1)' else 'e-' for f in formulas]) # Return empty Series if nothing found if len(ispecies) == 0: return pd.Series([], dtype=int) # Create a pandas Series with formulas as index (R-style named vector) # This allows both named access (result["Au"]) and positional access (result[0]) result = pd.Series(ispecies, index=formulas) return resultRetrieve species containing specified elements.
Parameters
elements:str, listofstr,ortupleofstr, optional-
Elements in a chemical system. If
elementsis a string, retrieve species containing that element.E.g.,
retrieve("Au")will return all species containing Au.If
elementsis a list, retrieve species that have all of the elements in the list.E.g.,
retrieve(["Au", "Cl"])will return all species that have both Au and Cl.If
elementsis a tuple, retrieve species relevant to the system, including charged species.E.g.,
retrieve(("Au", "Cl"))will return species that have Au and/or Cl, including charged species, but no other elements. ligands:str, listofstr,ortupleofstr, optional- Elements present in any ligands. This affects the species search: - If ligands is a state ('cr', 'liq', 'gas', 'aq'), use that as the state filter - Otherwise, include elements in the system defined by ligands
state:str, listofstr,ortupleofstr, optional- Filter the result on these state(s) ('aq', 'cr', 'gas', 'liq').
T:floatorlistoffloat, optional- Temperature (K) for filtering species with non-NA Gibbs energy.
P:str, float,orlistoffloat, default"Psat"- Pressure for Gibbs energy calculation. Default is "Psat" (saturation).
add_charge:bool, defaultTrue- For chemical systems (tuple input), automatically include charge (Z).
hide_groups:bool, defaultTrue- Exclude group species (names in brackets like [CH2]).
messages:bool, defaultTrue- Print informational messages. If False, suppress messages about updating the stoichiometric matrix and other information.
Returns
pd.Series- Series of species indices (1-based) with chemical formulas as index. This behaves like R's named vector - you can access by name or position. Names are chemical formulas (or 'e-' for electrons). Values are species indices that match the criteria.
Examples
>>> # All species containing Au >>> retrieve("Au")>>> # All species that have both Au and Cl >>> retrieve(["Au", "Cl"])>>> # Au-Cl system: species with Au and/or Cl, including charged species >>> retrieve(("Au", "Cl"))>>> # All Au-bearing species in the Au-Cl system >>> retrieve("Au", ("Cl",))>>> # All uncharged Au-bearing species in the Au-Cl system >>> retrieve("Au", ("Cl",), add_charge=False)>>> # Minerals in the system SiO2-MgO-CaO-CO2 >>> retrieve(("Si", "Mg", "Ca", "C", "O"), state="cr")Notes
This function uses 1-based indexing to match R CHNOSZ conventions. The returned indices are labels that can be used with .loc[], not positions.
def species(species: str | int | List[str | int] | pandas.core.series.Series | None = None,
state: str | List[str] | None = None,
delete: bool = False,
add: bool = False,
index_return: bool = False,
global_state: bool = True,
basis: pandas.core.frame.DataFrame | None = None,
messages: bool = True) ‑> pandas.core.frame.DataFrame | List[int] | None-
Expand source code
def species(species: Optional[Union[str, int, List[Union[str, int]], pd.Series]] = None, state: Optional[Union[str, List[str]]] = None, delete: bool = False, add: bool = False, index_return: bool = False, global_state: bool = True, basis: Optional[pd.DataFrame] = None, messages: bool = True) -> Optional[Union[pd.DataFrame, List[int]]]: """ Define species of interest for thermodynamic calculations. Parameters ---------- species : str, int, list, pd.Series, or None Species name(s), formula(s), or index(es). Can also be a pandas Series (e.g., from retrieve()). If None, returns current species definition. state : str, list of str, or None Physical state(s) for the species delete : bool, default False If True, delete species (all if species is None) add : bool, default False If True, add to existing species instead of replacing index_return : bool, default False If True, return species indices instead of DataFrame global_state : bool, default True If True, store species in global thermo().species (default behavior) If False, return species definition without storing globally (local state) basis : pd.DataFrame, optional Basis species definition to use (if not using global basis) Required when global_state=False and basis is not defined globally messages : bool, default True If True, print informational messages Returns ------- pd.DataFrame, list of int, or None Species definition DataFrame or indices, or None if deleted Examples -------- >>> # Define species of interest >>> species(["CO2", "HCO3-", "CO3-2"]) >>> # Add more species >>> species(["CH4", "C2H4"], add=True) >>> # Delete specific species >>> species(["CO2"], delete=True) >>> # Delete all species >>> species(delete=True) >>> # Use output from retrieve() >>> zn_species = retrieve("Zn", ["O", "H"], state="aq") >>> species(zn_species) """ thermo_obj = thermo() # Handle pandas Series (e.g., from retrieve()) if isinstance(species, pd.Series): # Extract the integer indices from the Series values species = species.values.tolist() # Handle NA species if species is pd.NA or species is np.nan: raise SpeciesError("'species' is NA") # Handle deletion if delete: return _delete_species(species, thermo_obj) # Return current species if no arguments if species is None and state is None: if index_return: if thermo_obj.species is not None: return list(range(1, len(thermo_obj.species) + 1)) else: return [] return thermo_obj.species # Use all species indices if species is None but state is given if species is None and thermo_obj.species is not None: species = list(range(1, len(thermo_obj.species) + 1)) # Process state argument state = _process_state_argument(state) # Make species and state same length species, state = _match_argument_lengths(species, state) # Handle numeric state (treat as logact) logact = None if state is not None and len(state) > 0: if isinstance(state[0], (int, float)): logact = [float(s) for s in state] state = None elif _can_be_numeric(state[0]): logact = [float(s) for s in state] state = None # Handle species-state combinations for proteins if state is not None: species, state = _handle_protein_naming(species, state, thermo_obj) # Process species argument iOBIGT = None if isinstance(species[0], str): # Check if species are in current definition if thermo_obj.species is not None: existing_indices = _match_existing_species(species, thermo_obj.species) if all(idx is not None for idx in existing_indices) and logact is not None: # Update activities of existing species # Update activities of existing species directly species_indices = [i+1 for i in existing_indices] # Convert to 1-based return _update_existing_species(species_indices, None, logact, index_return, thermo_obj) # Look up species in database iOBIGT = _lookup_species_indices(species, state, messages) else: # Handle numeric species if thermo_obj.species is not None: max_current = len(thermo_obj.species) if all(isinstance(s, int) and s <= max_current for s in species): # Referring to existing species return _update_existing_species(species, state, logact, index_return, thermo_obj) # Referring to OBIGT indices iOBIGT = species # Create or modify species definition if iOBIGT is not None: return _create_species_definition(iOBIGT, state, logact, add, index_return, thermo_obj, global_state, basis) else: return _update_existing_species(species, state, logact, index_return, thermo_obj)Define species of interest for thermodynamic calculations.
Parameters
species:str, int, list, pd.Series,orNone- Species name(s), formula(s), or index(es). Can also be a pandas Series (e.g., from retrieve()). If None, returns current species definition.
state:str, listofstr,orNone- Physical state(s) for the species
delete:bool, defaultFalse- If True, delete species (all if species is None)
add:bool, defaultFalse- If True, add to existing species instead of replacing
index_return:bool, defaultFalse- If True, return species indices instead of DataFrame
global_state:bool, defaultTrue- If True, store species in global thermo().species (default behavior) If False, return species definition without storing globally (local state)
basis:pd.DataFrame, optional- Basis species definition to use (if not using global basis) Required when global_state=False and basis is not defined globally
messages:bool, defaultTrue- If True, print informational messages
Returns
pd.DataFrame, listofint,orNone- Species definition DataFrame or indices, or None if deleted
Examples
>>> # Define species of interest >>> species(["CO2", "HCO3-", "CO3-2"])>>> # Add more species >>> species(["CH4", "C2H4"], add=True)>>> # Delete specific species >>> species(["CO2"], delete=True)>>> # Delete all species >>> species(delete=True)>>> # Use output from retrieve() >>> zn_species = retrieve("Zn", ["O", "H"], state="aq") >>> species(zn_species) def subcrt(species: str | List[str] | int | List[int],
coeff: int | float | List[int | float] | None = 1,
state: str | List[str] | None = None,
property: List[str] = ['logK', 'G', 'H', 'S', 'V', 'Cp'],
T: float | numpy.ndarray | List[float] = array([273.16, 298.15, 323.15, 348.15, 373.15, 398.15, 423.15, 448.15, 473.15, 498.15, 523.15, 548.15, 573.15, 598.15, 623.15]),
P: float | List[float] | numpy.ndarray | str = 'Psat',
grid: str | None = None,
convert: bool = True,
exceed_Ttr: bool = True,
exceed_rhomin: bool = False,
logact: List[float] | None = None,
autobalance: bool = True,
use_polymorphs: bool = True,
IS: float | List[float] = 0,
messages: bool = True,
show: bool = True,
basis: pandas.core.frame.DataFrame | None = None) ‑> pychnosz.core.subcrt.SubcrtResult-
Expand source code
def subcrt(species: Union[str, List[str], int, List[int]], coeff: Union[int, float, List[Union[int, float]], None] = 1, state: Optional[Union[str, List[str]]] = None, property: List[str] = ["logK", "G", "H", "S", "V", "Cp"], T: Union[float, List[float], np.ndarray] = np.concatenate([[273.16], 273.15 + np.arange(25, 351, 25)]), P: Union[float, List[float], np.ndarray, str] = "Psat", grid: Optional[str] = None, convert: bool = True, exceed_Ttr: bool = True, exceed_rhomin: bool = False, logact: Optional[List[float]] = None, autobalance: bool = True, use_polymorphs: bool = True, IS: Union[float, List[float]] = 0, messages: bool = True, show: bool = True, basis: Optional[pd.DataFrame] = None, _recursion_count: int = 0) -> SubcrtResult: """ Calculate standard molal thermodynamic properties of species and reactions. This function reproduces the behavior of R CHNOSZ subcrt() exactly, including all argument handling, validation, calculations, and output formatting. Parameters ---------- species : str, list of str, int, or list of int Species names, formulas, or indices in thermodynamic database coeff : int, float, list, or None Stoichiometric coefficients for reaction calculation If 1 (default), calculate individual species properties If list, calculate reaction with given coefficients state : str, list of str, or None Physical states ("aq", "cr", "gas", "liq") for species property : list of str Properties to calculate: "logK", "G", "H", "S", "V", "Cp", "rho", "kT", "E" T : float, list, or ndarray Temperature(s) in K (default: 273.16, then 298.15 to 623.15 by 25 K) P : float, list, ndarray, or "Psat" Pressure(s) in bar or "Psat" for saturation pressure grid : str or None Grid calculation mode: "T", "P", "IS", or None convert : bool Convert temperature/pressure units (default: True) exceed_Ttr : bool Allow calculations beyond transition temperatures (default: False) exceed_rhomin : bool Allow calculations below minimum water density (default: False) logact : list of float or None Activity coefficients (log10 scale) autobalance : bool Automatically balance reactions using basis species (default: True) use_polymorphs : bool Include polymorphic phases for minerals (default: True) IS : float or list of float Ionic strength for activity corrections (default: 0) messages : bool, default True Whether to print informational messages show : bool, default True Whether to display result tables in Jupyter notebooks (default: True) Set to False when calling subcrt() from other functions basis : pd.DataFrame, optional Basis species definition to use for autobalancing (if not using global basis) Returns ------- SubcrtResult Object containing: - species: DataFrame with species information - out: DataFrame with calculated thermodynamic properties - reaction: DataFrame with reaction stoichiometry (if reaction) - warnings: List of warning messages Examples -------- >>> import pychnosz >>> pychnosz.reset() >>> >>> # Single species properties >>> result = subcrt("H2O", T=25, P=1) >>> print(result.out[["G", "H", "S", "Cp"]]) >>> >>> # Reaction calculation >>> result = subcrt(["H2O", "H+", "OH-"], [-1, 1, 1], T=25, P=1) >>> print(f"Water dissociation ΔG° = {result.out.G[0]:.3f} kJ/mol") >>> >>> # Temperature array >>> result = subcrt("quartz", T=[25, 100, 200], P=1) >>> print(result.out[["T", "G", "H", "S"]]) Notes ----- This implementation maintains complete fidelity to R CHNOSZ subcrt(): - Identical argument processing and validation - Same species lookup and polymorphic handling - Exact HKF and CGL equation-of-state calculations - Same reaction balancing and autobalance logic - Identical output structure and formatting - Same warning and error messages """ result = SubcrtResult() # Prevent infinite recursion in auto-balancing if _recursion_count > 5: result.warnings.append("Maximum recursion depth reached in auto-balancing") return result try: # === Phase 1: Argument Processing and Validation === # (Exactly matching R subcrt.R lines 21-77) # Handle argument reordering if states are second argument if coeff != 1 and isinstance(coeff, (list, str)) and isinstance(coeff[0] if isinstance(coeff, list) else coeff, str): # States were passed as second argument - reorder if state is not None: if isinstance(state, (int, float)) or (isinstance(state, list) and all(isinstance(x, (int, float)) for x in state)): # Third argument is coefficients new_coeff = state new_state = coeff return subcrt(species, new_coeff, new_state, property, T, P, grid, convert, exceed_Ttr, exceed_rhomin, logact, autobalance, use_polymorphs, IS, messages, show, basis, _recursion_count) else: raise ValueError("If both coeff and state are given, one should be numeric coefficients") else: # Only states provided, no coefficients new_state = coeff return subcrt(species, 1, new_state, property, T, P, grid, convert, exceed_Ttr, exceed_rhomin, logact, autobalance, use_polymorphs, IS, messages, show, basis, _recursion_count) # Determine if this is a reaction calculation do_reaction = (coeff != 1 and coeff is not None and (isinstance(coeff, list) or isinstance(coeff, (int, float)) and coeff != 1)) # Convert inputs to consistent formats species = [species] if isinstance(species, (str, int)) else list(species) if state is not None: state = [state] if isinstance(state, str) else list(state) # Make species and state same length if len(state) > len(species): species = species * (len(state) // len(species) + 1) species = species[:len(state)] elif len(species) > len(state): state = state * (len(species) // len(state) + 1) state = state[:len(species)] if do_reaction: if isinstance(coeff, (int, float)): coeff = [coeff] coeff = list(coeff) # Validate properties allowed_properties = ["rho", "logK", "G", "H", "S", "Cp", "V", "kT", "E"] if isinstance(property, str): property = [property] invalid_props = [p for p in property if p not in allowed_properties] if invalid_props: if len(invalid_props) == 1: raise ValueError(f"invalid property name: {invalid_props[0]}") else: raise ValueError(f"invalid property names: {', '.join(invalid_props)}") # Length checking if do_reaction and len(species) != len(coeff): raise ValueError("the length of 'coeff' must equal the number of species") if logact is not None and len(logact) != len(species): raise ValueError("the length of 'logact' must equal the number of species") # Unit conversion T_array = np.atleast_1d(np.asarray(T, dtype=float)) # Convert temperature to Kelvin if convert=True (matching R CHNOSZ behavior) # R: if(convert) T <- envert(T, "K") - converts Celsius input to Kelvin # Default parameter is [273.16, 298.15, 323.15, ..., 623.15] which is already in K, so only convert user input default_T = np.concatenate([[273.16], 273.15 + np.arange(25, 351, 25)]) if convert and not np.array_equal(T_array, default_T[:len(T_array)]): # User provided temperature, assume Celsius and convert to Kelvin T_array = T_array + 273.15 # Handle T=273.15K (0°C) exactly - R CHNOSZ uses 273.16K (0.01°C) instead # This avoids numerical issues at the freezing point T_array = np.where(np.abs(T_array - 273.15) < 1e-10, 273.16, T_array) if isinstance(P, str) and P == "Psat": P_array = "Psat" else: P_array = np.atleast_1d(np.asarray(P, dtype=float)) # P is assumed to be in bar (R CHNOSZ standard) # Warning for high temperatures with Psat # Check if P is "Psat" (compare to the original P, not P_array which may be converted) if isinstance(P, str) and P == "Psat" and np.any(T_array > 647.067): n_over = np.sum(T_array > 647.067) vtext = "value" if n_over == 1 else "values" result.warnings.append(f"P = 'Psat' undefined for T > Tcritical ({n_over} T {vtext})") # === Phase 2: Grid Processing === # Handle grid calculations (T-P arrays) if grid is not None: if grid == "T": # Grid over temperature new_T = [] for temp in T_array: if isinstance(P_array, str): new_T.extend([temp] * 1) else: new_T.extend([temp] * len(P_array)) if isinstance(P_array, str): new_P = P_array else: new_P = list(P_array) * len(T_array) T_array = np.array(new_T) P_array = new_P elif grid == "P": # Grid over pressure if not isinstance(P_array, str): new_P = [] for press in P_array: new_P.extend([press] * len(T_array)) new_T = list(T_array) * len(P_array) T_array = np.array(new_T) P_array = np.array(new_P) elif grid == "IS": # Grid over ionic strength IS_array = np.atleast_1d(np.asarray(IS)) original_len = max(len(T_array), len(P_array) if not isinstance(P_array, str) else 1) new_IS = [] for ionic_str in IS_array: new_IS.extend([ionic_str] * original_len) T_array = np.tile(T_array, len(IS_array)) if isinstance(P_array, str): P_array = P_array else: P_array = np.tile(P_array, len(IS_array)) IS = new_IS else: # Ensure T and P are same length if isinstance(P_array, str): # P = "Psat", keep T as is pass else: max_len = max(len(T_array), len(P_array)) if len(T_array) < max_len: T_array = np.resize(T_array, max_len) if len(P_array) < max_len: P_array = np.resize(P_array, max_len) # === Phase 3: Species Lookup and Validation === result.species, result.reaction, iphases, isaq, isH2O, iscgl, polymorph_species, ispecies = _process_species( species, state, coeff, do_reaction, use_polymorphs, messages=messages) # === Phase 4: Generate Output Message === if (len(species) > 1 or convert) and messages: _print_subcrt_message(species, T_array, P_array, isaq.any() or isH2O.any(), messages) # === Phase 5: Reaction Balance Check === if do_reaction and autobalance: # Use original ispecies and coeff for balance check (before polymorph expansion) # This matches R CHNOSZ behavior where balance check happens before polymorph expansion rebalanced_result = _check_reaction_balance(result, species, coeff, state, property, T_array, P_array, grid, convert, logact, exceed_Ttr, exceed_rhomin, IS, ispecies, _recursion_count, basis, T, P, messages, show) if rebalanced_result is not None: # If reaction was rebalanced, return the result return rebalanced_result # === Phase 6: Property Calculations === result.out, calc_warnings = _calculate_properties(property, iphases, isaq, isH2O, iscgl, T_array, P_array, exceed_rhomin, exceed_Ttr, IS, logact, do_reaction) # Add calculation warnings to result result.warnings.extend(calc_warnings) # === Phase 6.5: Polymorph Selection === if use_polymorphs: # Select stable polymorphs based on minimum Gibbs energy # Apply to both individual species AND reactions (matching R CHNOSZ behavior) thermo_sys = thermo() if do_reaction: # For reactions, also update coefficients and rebuild reaction DataFrame result.out, updated_coeff, updated_iphases = _select_stable_polymorphs(result.out, iphases, polymorph_species, ispecies, thermo_sys, result.reaction['coeff'].tolist(), messages) # Rebuild reaction DataFrame with updated species list reaction_data = [] for i, iph in enumerate(updated_iphases): row = thermo_sys.obigt.loc[iph] model = row.get('model', 'unknown') if model == "H2O": water_model = thermo_sys.get_option('water', 'SUPCRT92') model = f"water.{water_model}" reaction_data.append({ 'coeff': updated_coeff[i], 'name': row['name'], 'formula': row['formula'], 'state': row['state'], 'ispecies': iph, 'model': model }) result.reaction = pd.DataFrame(reaction_data) else: # For individual species, no coefficient update needed result.out, _ = _select_stable_polymorphs(result.out, iphases, polymorph_species, ispecies, thermo_sys, None, messages) # For single species (non-reaction), convert back to DataFrame format if not do_reaction and isinstance(result.out, dict) and 'species_data' in result.out and len(result.out['species_data']) == 1: result.out = result.out['species_data'][0] # === Phase 7: Reaction Property Summation === if do_reaction: result.out = _sum_reaction_properties(result.out, result.reaction['coeff']) # === Phase 8: Unit Conversion (convert=True) === if convert: # Apply R CHNOSZ compatible conversion # This matches the observed behavior where convert=TRUE gives different results # than just multiplying by 4.184 result.out = _apply_r_chnosz_conversion(result.out, do_reaction) # Recalculate logK after unit conversion to ensure consistency if do_reaction and 'logK' in property and 'G' in result.out.columns: if not result.out['G'].isna().all(): R = 8.314462618 # J/(mol·K) - CODATA 2018 value T_array = np.atleast_1d(T_array) result.out['logK'] = -result.out['G'] / (np.log(10) * R * T_array) # Display tables in Jupyter notebooks if show=True if show: _display_subcrt_result(result) # Print warnings (matching R CHNOSZ behavior - lines 621-624) if result.warnings and messages: for warn in result.warnings: warnings.warn(warn) return result except Exception as e: result.warnings.append(f"subcrt error: {str(e)}") raiseCalculate standard molal thermodynamic properties of species and reactions.
This function reproduces the behavior of R CHNOSZ subcrt() exactly, including all argument handling, validation, calculations, and output formatting.
Parameters
species:str, listofstr, int,orlistofint- Species names, formulas, or indices in thermodynamic database
coeff:int, float, list,orNone- Stoichiometric coefficients for reaction calculation If 1 (default), calculate individual species properties If list, calculate reaction with given coefficients
state:str, listofstr,orNone- Physical states ("aq", "cr", "gas", "liq") for species
property:listofstr- Properties to calculate: "logK", "G", "H", "S", "V", "Cp", "rho", "kT", "E"
T:float, list,orndarray- Temperature(s) in K (default: 273.16, then 298.15 to 623.15 by 25 K)
P:float, list, ndarray,or"Psat"- Pressure(s) in bar or "Psat" for saturation pressure
grid:strorNone- Grid calculation mode: "T", "P", "IS", or None
convert:bool- Convert temperature/pressure units (default: True)
exceed_Ttr:bool- Allow calculations beyond transition temperatures (default: False)
exceed_rhomin:bool- Allow calculations below minimum water density (default: False)
logact:listoffloatorNone- Activity coefficients (log10 scale)
autobalance:bool- Automatically balance reactions using basis species (default: True)
use_polymorphs:bool- Include polymorphic phases for minerals (default: True)
IS:floatorlistoffloat- Ionic strength for activity corrections (default: 0)
messages:bool, defaultTrue- Whether to print informational messages
show:bool, defaultTrue- Whether to display result tables in Jupyter notebooks (default: True) Set to False when calling subcrt() from other functions
basis:pd.DataFrame, optional- Basis species definition to use for autobalancing (if not using global basis)
Returns
SubcrtResult- Object containing: - species: DataFrame with species information - out: DataFrame with calculated thermodynamic properties - reaction: DataFrame with reaction stoichiometry (if reaction) - warnings: List of warning messages
Examples
>>> import pychnosz >>> pychnosz.reset() >>> >>> # Single species properties >>> result = subcrt("H2O", T=25, P=1) >>> print(result.out[["G", "H", "S", "Cp"]]) >>> >>> # Reaction calculation >>> result = subcrt(["H2O", "H+", "OH-"], [-1, 1, 1], T=25, P=1) >>> print(f"Water dissociation ΔG° = {result.out.G[0]:.3f} kJ/mol") >>> >>> # Temperature array >>> result = subcrt("quartz", T=[25, 100, 200], P=1) >>> print(result.out[["T", "G", "H", "S"]])Notes
This implementation maintains complete fidelity to R CHNOSZ subcrt(): - Identical argument processing and validation - Same species lookup and polymorphic handling - Exact HKF and CGL equation-of-state calculations - Same reaction balancing and autobalance logic - Identical output structure and formatting - Same warning and error messages
def thermo(*args, messages=True, **kwargs)-
Expand source code
def thermo(*args, messages=True, **kwargs): """ Access or modify the thermodynamic system data object. This function provides a convenient interface to get or set parts of the thermodynamic system, similar to R's par() function for graphics parameters. Parameters ---------- *args : str or list of str Names of attributes to retrieve (e.g., "element", "opt$ideal.H") For nested access, use "$" notation (e.g., "opt$E.units") Special values: - "WORM": Load the WORM thermodynamic database (Python-exclusive feature) messages : bool, default True Whether to print informational messages during operations **kwargs : any Named arguments to set attributes (e.g., element=new_df, opt={'E.units': 'cal'}) For nested attributes, use "$" in the name (e.g., **{"opt$ideal.H": False}) Returns ------- various - If no arguments: returns the ThermoSystem object - If single unnamed argument: returns the requested value - If multiple unnamed arguments: returns list of requested values - If named arguments: returns original values before modification Examples -------- >>> import pychnosz >>> # Get the entire thermo object >>> ts = pychnosz.thermo() >>> # Get a specific attribute >>> elem = pychnosz.thermo("element") >>> # Get nested attribute >>> e_units = pychnosz.thermo("opt$E.units") >>> # Get multiple attributes >>> elem, buf = pychnosz.thermo("element", "buffer") >>> # Set an attribute >>> old_elem = pychnosz.thermo(element=new_element_df) >>> # Set nested attribute >>> old_units = pychnosz.thermo(**{"opt$ideal.H": False}) >>> # Load WORM database (Python-exclusive feature) >>> pychnosz.thermo("WORM") >>> # Suppress messages >>> pychnosz.thermo("WORM", messages=False) Notes ----- This function mimics the behavior of R CHNOSZ thermo() function, providing flexible access to the thermodynamic data object. The "WORM" special argument is a Python-exclusive feature that loads the Water-Organic-Rock-Microbe thermodynamic database from the WORM-db GitHub repository. """ # Get the global thermo system thermo_sys = get_thermo_system() # If no arguments, return the entire object if len(args) == 0 and len(kwargs) == 0: return thermo_sys # Handle character vectors passed as args (like R's c("basis", "species")) # If all args are strings or lists of strings, flatten them flat_args = [] for arg in args: if isinstance(arg, (list, tuple)) and all(isinstance(x, str) for x in arg): flat_args.extend(arg) else: flat_args.append(arg) args = flat_args # Prepare return values list return_values = [] # Ensure system is initialized if needed (before accessing any properties) # This prevents auto-initialization from using hardcoded messages=True if not thermo_sys.is_initialized() and len(args) > 0: thermo_sys.reset(messages=messages) # Process unnamed arguments (getters) for arg in args: if not isinstance(arg, str): raise TypeError(f"Unnamed arguments must be strings, got {type(arg)}") # Special handling for "WORM" - load WORM database if arg.upper() == "WORM": from ..data.worm import load_WORM success = load_WORM(keep_default=False, messages=messages) return_values.append(success) continue # Parse the argument to get slots (handle nested access with $) slots = arg.split('$') # Get the value from thermo_sys value = thermo_sys for slot in slots: # Handle OBIGT case-insensitively (R uses uppercase, Python uses lowercase) slot_lower = slot.lower() if hasattr(value, slot_lower): value = getattr(value, slot_lower) elif hasattr(value, slot): value = getattr(value, slot) elif isinstance(value, dict) and slot in value: value = value[slot] else: raise AttributeError(f"Attribute '{arg}' not found in thermo object") return_values.append(value) # Process named arguments (setters) setter_returns = {} # Ensure system is initialized if needed (before setting any properties) if not thermo_sys.is_initialized() and len(kwargs) > 0: thermo_sys.reset(messages=messages) for key, new_value in kwargs.items(): # Parse the key to get slots slots = key.split('$') # Get the original value before modification orig_value = thermo_sys for slot in slots: # Handle case-insensitive attribute access (for OBIGT, etc.) slot_lower = slot.lower() if hasattr(orig_value, slot_lower): orig_value = getattr(orig_value, slot_lower) elif hasattr(orig_value, slot): orig_value = getattr(orig_value, slot) elif isinstance(orig_value, dict) and slot in orig_value: orig_value = orig_value[slot] else: raise AttributeError(f"Attribute '{key}' not found in thermo object") setter_returns[key] = orig_value # Set the new value if len(slots) == 1: # Direct attribute # Special handling for OBIGT - normalize index and handle refs if slots[0].upper() == 'OBIGT': # Handle OBIGT replacement with proper index normalization _set_obigt_data(thermo_sys, new_value) else: # Use lowercase version if it exists (Python convention) slot_lower = slots[0].lower() if hasattr(thermo_sys, slot_lower): setattr(thermo_sys, slot_lower, new_value) else: setattr(thermo_sys, slots[0], new_value) elif len(slots) == 2: # Nested attribute (e.g., opt$ideal.H) parent = getattr(thermo_sys, slots[0]) if isinstance(parent, dict): parent[slots[1]] = new_value else: setattr(parent, slots[1], new_value) else: # Deeper nesting (if needed) current = thermo_sys for i, slot in enumerate(slots[:-1]): if hasattr(current, slot): current = getattr(current, slot) elif isinstance(current, dict) and slot in current: current = current[slot] # Set the final value final_slot = slots[-1] if isinstance(current, dict): current[final_slot] = new_value else: setattr(current, final_slot, new_value) # Determine return value based on R's behavior if len(kwargs) > 0: # If we had setters, return the original values as a named dict # In R, setters always return a named list if len(args) == 0: # Only setters - return dict (named list in R) return setter_returns else: # Mix of getters and setters - return all original values combined = {} for i, arg in enumerate(args): combined[arg] = return_values[i] combined.update(setter_returns) return combined else: # Only getters # Single unnamed argument returns the value directly if len(return_values) == 1: return return_values[0] return return_valuesAccess or modify the thermodynamic system data object.
This function provides a convenient interface to get or set parts of the thermodynamic system, similar to R's par() function for graphics parameters.
Parameters
*args:strorlistofstr- Names of attributes to retrieve (e.g., "element", "opt$ideal.H") For nested access, use "$" notation (e.g., "opt$E.units") Special values: - "WORM": Load the WORM thermodynamic database (Python-exclusive feature)
messages:bool, defaultTrue- Whether to print informational messages during operations
**kwargs:any- Named arguments to set attributes (e.g., element=new_df, opt={'E.units': 'cal'}) For nested attributes, use "$" in the name (e.g., **{"opt$ideal.H": False})
Returns
various-
- If no arguments: returns the ThermoSystem object
- If single unnamed argument: returns the requested value
- If multiple unnamed arguments: returns list of requested values
- If named arguments: returns original values before modification
Examples
>>> import pychnosz >>> # Get the entire thermo object >>> ts = pychnosz.thermo()>>> # Get a specific attribute >>> elem = pychnosz.thermo("element")>>> # Get nested attribute >>> e_units = pychnosz.thermo("opt$E.units")>>> # Get multiple attributes >>> elem, buf = pychnosz.thermo("element", "buffer")>>> # Set an attribute >>> old_elem = pychnosz.thermo(element=new_element_df)>>> # Set nested attribute >>> old_units = pychnosz.thermo(**{"opt$ideal.H": False})>>> # Load WORM database (Python-exclusive feature) >>> pychnosz.thermo("WORM")>>> # Suppress messages >>> pychnosz.thermo("WORM", messages=False)Notes
This function mimics the behavior of R CHNOSZ thermo() function, providing flexible access to the thermodynamic data object.
The "WORM" special argument is a Python-exclusive feature that loads the Water-Organic-Rock-Microbe thermodynamic database from the WORM-db GitHub repository.
Classes
class BasisError (*args, **kwargs)-
Expand source code
class BasisError(Exception): """Exception raised for basis-related errors.""" passException raised for basis-related errors.
Ancestors
- builtins.Exception
- builtins.BaseException
class SpeciesError (*args, **kwargs)-
Expand source code
class SpeciesError(Exception): """Exception raised for species-related errors.""" passException raised for species-related errors.
Ancestors
- builtins.Exception
- builtins.BaseException
class ThermoSystem-
Expand source code
class ThermoSystem: """ Global thermodynamic system manager for CHNOSZ. This class manages the thermodynamic database, basis species, formed species, and calculation options - essentially serving as the global state container for all CHNOSZ calculations. """ def __init__(self): """Initialize the thermodynamic system.""" self._data_loader = DataLoader() self._obigt_db = None self._initialized = False # Core data containers (similar to R thermo object) self.opt: Dict[str, Any] = {} self.element: Optional[pd.DataFrame] = None self.obigt: Optional[pd.DataFrame] = None self.refs: Optional[pd.DataFrame] = None self.Berman: Optional[pd.DataFrame] = None self.buffer: Optional[pd.DataFrame] = None self.protein: Optional[pd.DataFrame] = None self.groups: Optional[pd.DataFrame] = None self.stoich: Optional[np.ndarray] = None self.stoich_formulas: Optional[np.ndarray] = None self.bdot_acirc: Optional[Dict[str, float]] = None self.formula_ox: Optional[pd.DataFrame] = None # System state self.basis: Optional[pd.DataFrame] = None self.species: Optional[pd.DataFrame] = None # Options and parameters self.opar: Dict[str, Any] = {} def reset(self, messages: bool = True) -> None: """ Initialize/reset the thermodynamic system. This is equivalent to reset() in the R version, loading all the thermodynamic data and initializing the system. Parameters ---------- messages : bool, default True Whether to print informational messages """ try: # Load core data files self._load_options(messages) self._load_element_data(messages) self._load_berman_data(messages) self._load_buffer_data(messages) self._load_protein_data(messages) self._load_stoich_data(messages) self._load_bdot_data(messages) self._load_refs_data(messages) # Initialize OBIGT database self._obigt_db = OBIGTDatabase() self.obigt = self._obigt_db.get_combined_data() # Reset system state self.basis = None self.species = None self.opar = {} self._initialized = True if messages: print('reset: thermodynamic system initialized') except Exception as e: raise RuntimeError(f"Failed to initialize thermodynamic system: {e}") def _load_options(self, messages: bool = True) -> None: """Load default thermodynamic options.""" try: opt_file = self._data_loader.get_data_path() / "thermo" / "opt.csv" if opt_file.exists(): df = pd.read_csv(opt_file) # Convert to dictionary format (first row contains values) self.opt = dict(zip(df.columns, df.iloc[0])) else: # Default options if file not found self.opt = { 'E.units': 'J', 'T.units': 'C', 'P.units': 'bar', 'state': 'aq', 'water': 'SUPCRT92', 'G.tol': 100, 'Cp.tol': 1, 'V.tol': 1, 'varP': False, 'IAPWS.sat': 'liquid', 'paramin': 1000, 'ideal.H': True, 'ideal.e': True, 'nonideal': 'Bdot', 'Setchenow': 'bgamma0', 'Berman': np.nan, 'maxcores': 2, 'ionize.aa': True } except Exception as e: if messages: print(f"Warning: Could not load options: {e}") # Fallback to hardcoded defaults with critical unit options self.opt = { 'E.units': 'J', 'T.units': 'C', 'P.units': 'bar', 'state': 'aq', 'water': 'SUPCRT92', 'G.tol': 100, 'Cp.tol': 1, 'V.tol': 1, 'varP': False, 'IAPWS.sat': 'liquid', 'paramin': 1000, 'ideal.H': True, 'ideal.e': True, 'nonideal': 'Bdot', 'Setchenow': 'bgamma0', 'Berman': np.nan, 'maxcores': 2, 'ionize.aa': True } def _load_element_data(self, messages: bool = True) -> None: """Load element properties data.""" try: self.element = self._data_loader.load_elements() except Exception as e: if messages: print(f"Warning: Could not load element data: {e}") self.element = None def _load_berman_data(self, messages: bool = True) -> None: """Load Berman mineral parameters from CSV files.""" try: # Get path to Berman directory berman_path = self._data_loader.data_path / "Berman" if not berman_path.exists(): if messages: print(f"Warning: Berman directory not found: {berman_path}") self.Berman = None return # Find all CSV files in the directory csv_files = list(berman_path.glob("*.csv")) if not csv_files: if messages: print(f"Warning: No CSV files found in {berman_path}") self.Berman = None return # Extract year from filename and sort in reverse chronological order (youngest first) # Following R logic: files <- rev(files[order(sapply(strsplit(files, "_"), "[", 2))]) def extract_year(filepath): filename = filepath.name parts = filename.split('_') if len(parts) >= 2: year_part = parts[1].replace('.csv', '') try: return int(year_part) except ValueError: return 0 return 0 # Sort files by year (youngest first) sorted_files = sorted(csv_files, key=extract_year, reverse=True) # Read parameters from each file berman_dfs = [] for file_path in sorted_files: try: df = pd.read_csv(file_path) berman_dfs.append(df) except Exception as e: print(f"Warning: Could not read Berman file {file_path}: {e}") # Combine all data frames (equivalent to do.call(rbind, Berman)) if berman_dfs: self.Berman = pd.concat(berman_dfs, ignore_index=True) # Ensure all numeric columns are properly typed numeric_cols = ['GfPrTr', 'HfPrTr', 'SPrTr', 'VPrTr', 'k0', 'k1', 'k2', 'k3', 'k4', 'k5', 'k6', 'v1', 'v2', 'v3', 'v4', 'Tlambda', 'Tref', 'dTdP', 'l1', 'l2', 'DtH', 'Tmax', 'Tmin', 'd0', 'd1', 'd2', 'd3', 'd4', 'Vad'] for col in numeric_cols: if col in self.Berman.columns: self.Berman[col] = pd.to_numeric(self.Berman[col], errors='coerce') else: self.Berman = None except Exception as e: if messages: print(f"Warning: Could not load Berman data: {e}") self.Berman = None def _load_buffer_data(self, messages: bool = True) -> None: """Load buffer definitions.""" try: self.buffer = self._data_loader.load_buffers() except Exception as e: if messages: print(f"Warning: Could not load buffer data: {e}") self.buffer = None def _load_protein_data(self, messages: bool = True) -> None: """Load protein composition data.""" try: self.protein = self._data_loader.load_proteins() except Exception as e: if messages: print(f"Warning: Could not load protein data: {e}") self.protein = None def _load_stoich_data(self, messages: bool = True) -> None: """Load stoichiometric matrix data.""" try: stoich_df = self._data_loader.load_stoich() if stoich_df is not None: # Extract formulas and convert to matrix self.stoich_formulas = stoich_df.iloc[:, 0].values self.stoich = stoich_df.iloc[:, 1:].values else: self.stoich_formulas = None self.stoich = None except Exception as e: if messages: print(f"Warning: Could not load stoichiometric data: {e}") self.stoich_formulas = None self.stoich = None def _load_bdot_data(self, messages: bool = True) -> None: """Load B-dot activity coefficient parameters.""" try: bdot_file = self._data_loader.get_data_path() / "thermo" / "Bdot_acirc.csv" if bdot_file.exists(): df = pd.read_csv(bdot_file) if len(df.columns) >= 2: self.bdot_acirc = dict(zip(df.iloc[:, 0], df.iloc[:, 1])) else: self.bdot_acirc = {} else: self.bdot_acirc = {} except Exception as e: if messages: print(f"Warning: Could not load B-dot data: {e}") self.bdot_acirc = {} def _load_refs_data(self, messages: bool = True) -> None: """Load references data.""" try: self.refs = self._data_loader.load_refs() except Exception as e: if messages: print(f"Warning: Could not load refs data: {e}") self.refs = None def is_initialized(self) -> bool: """Check if the thermodynamic system is initialized.""" return self._initialized def get_obigt_db(self) -> OBIGTDatabase: """Get the OBIGT database instance.""" if not self._initialized: self.reset() return self._obigt_db def get_option(self, key: str, default: Any = None) -> Any: """Get a thermodynamic option value.""" return self.opt.get(key, default) def set_option(self, key: str, value: Any) -> None: """Set a thermodynamic option value.""" self.opt[key] = value def info(self) -> Dict[str, Any]: """Get information about the current thermodynamic system.""" if not self._initialized: return {"status": "Not initialized"} info = { "status": "Initialized", "obigt_species": len(self.obigt) if self.obigt is not None else 0, "elements": len(self.element) if self.element is not None else 0, "berman_minerals": len(self.Berman) if self.Berman is not None else 0, "buffers": len(self.buffer) if self.buffer is not None else 0, "proteins": len(self.protein) if self.protein is not None else 0, "stoich_species": len(self.stoich_formulas) if self.stoich_formulas is not None else 0, "basis_species": len(self.basis) if self.basis is not None else 0, "formed_species": len(self.species) if self.species is not None else 0, "current_options": dict(self.opt) } return info def __repr__(self) -> str: """String representation of the thermodynamic system.""" if not self._initialized: return "ThermoSystem(uninitialized)" info = self.info() return (f"ThermoSystem(" f"obigt={info['obigt_species']} species, " f"basis={info['basis_species']}, " f"formed={info['formed_species']})") # R-style uppercase property aliases for compatibility @property def OBIGT(self): """Alias for obigt (R compatibility).""" # Auto-initialize if needed AND obigt is None (matches R behavior) if self.obigt is None and not self._initialized: self.reset(messages=True) return self.obigt @OBIGT.setter def OBIGT(self, value): """Setter for OBIGT (R compatibility).""" _set_obigt_data(self, value)Global thermodynamic system manager for CHNOSZ.
This class manages the thermodynamic database, basis species, formed species, and calculation options - essentially serving as the global state container for all CHNOSZ calculations.
Initialize the thermodynamic system.
Instance variables
prop OBIGT-
Expand source code
@property def OBIGT(self): """Alias for obigt (R compatibility).""" # Auto-initialize if needed AND obigt is None (matches R behavior) if self.obigt is None and not self._initialized: self.reset(messages=True) return self.obigtAlias for obigt (R compatibility).
Methods
def get_obigt_db(self) ‑> OBIGTDatabase-
Expand source code
def get_obigt_db(self) -> OBIGTDatabase: """Get the OBIGT database instance.""" if not self._initialized: self.reset() return self._obigt_dbGet the OBIGT database instance.
def get_option(self, key: str, default: Any = None) ‑> Any-
Expand source code
def get_option(self, key: str, default: Any = None) -> Any: """Get a thermodynamic option value.""" return self.opt.get(key, default)Get a thermodynamic option value.
def info(self) ‑> Dict[str, Any]-
Expand source code
def info(self) -> Dict[str, Any]: """Get information about the current thermodynamic system.""" if not self._initialized: return {"status": "Not initialized"} info = { "status": "Initialized", "obigt_species": len(self.obigt) if self.obigt is not None else 0, "elements": len(self.element) if self.element is not None else 0, "berman_minerals": len(self.Berman) if self.Berman is not None else 0, "buffers": len(self.buffer) if self.buffer is not None else 0, "proteins": len(self.protein) if self.protein is not None else 0, "stoich_species": len(self.stoich_formulas) if self.stoich_formulas is not None else 0, "basis_species": len(self.basis) if self.basis is not None else 0, "formed_species": len(self.species) if self.species is not None else 0, "current_options": dict(self.opt) } return infoGet information about the current thermodynamic system.
def is_initialized(self) ‑> bool-
Expand source code
def is_initialized(self) -> bool: """Check if the thermodynamic system is initialized.""" return self._initializedCheck if the thermodynamic system is initialized.
def reset(self, messages: bool = True) ‑> None-
Expand source code
def reset(self, messages: bool = True) -> None: """ Initialize/reset the thermodynamic system. This is equivalent to reset() in the R version, loading all the thermodynamic data and initializing the system. Parameters ---------- messages : bool, default True Whether to print informational messages """ try: # Load core data files self._load_options(messages) self._load_element_data(messages) self._load_berman_data(messages) self._load_buffer_data(messages) self._load_protein_data(messages) self._load_stoich_data(messages) self._load_bdot_data(messages) self._load_refs_data(messages) # Initialize OBIGT database self._obigt_db = OBIGTDatabase() self.obigt = self._obigt_db.get_combined_data() # Reset system state self.basis = None self.species = None self.opar = {} self._initialized = True if messages: print('reset: thermodynamic system initialized') except Exception as e: raise RuntimeError(f"Failed to initialize thermodynamic system: {e}")Initialize/reset the thermodynamic system.
This is equivalent to reset() in the R version, loading all the thermodynamic data and initializing the system.
Parameters
messages:bool, defaultTrue- Whether to print informational messages
def set_option(self, key: str, value: Any) ‑> None-
Expand source code
def set_option(self, key: str, value: Any) -> None: """Set a thermodynamic option value.""" self.opt[key] = valueSet a thermodynamic option value.